HOMEWORK \#1

1. Problem 1.8 of the text.
2. Consider a star that is spherical. The star has a spot on it. The star has spherical coordinates (ϑ, φ), and the star is rotating. The center of the spot is at a stellar co-latitude of ϑ from the star's north pole, and has stellar azimuth $\varphi=\omega t$, where t is time and ω is angular rotation speed.

Figure 1: Star geometry.

a) Consider an observer in direction $\vartheta=i$ and $\varphi=0$, where i is the observer's viewing inclination of this star. Both angles are fixed. The spot has coordinates of (ψ, α) as measured from the observer's z-axis (see figure). For a given inclination, prove that the spot center will NOT be occulted in its circuit around the star if it has co-latitude $\vartheta<\pi / 2-i$.
b) Use spherical trigonometry to find a relation for the angle ψ of the spot, as seen by the observer, as a function of t, ϑ, and i.
c) Use the expression from part (b) to determine $d \psi / d t=\dot{\psi}$ as a function of φ. Bear in mind that the star rotates like a solid body so that $\dot{\phi}=\omega$.
3. Consider a planet orbiting a distant star. If the orbit is circular, the speed will be $v(r)=v_{0} \sqrt{R / r}$, for R the stellar radius and r the orbital radius. In vector form $\vec{v}=v(r) \hat{\varphi}$, for φ the azimuth of the orbit about the star. An observer is in the direction $(i, 0)$ along unit vector \hat{z}. Determine the projected line-of-sight velocity of the planet (basically the Doppler shift) in the direction of the observer as a function of r, i, φ. (This problem is somewhat similar to the previous one. Use a vector dot product. Assume the planet is in the equatorial plane of the star at a co-latitude of $\vartheta=\pi / 2$.)
4. Problem 3.9 of the text.
5. For measurements with Poisson noise (such as photon counting), the "signal-to-noise" of a measurement (the quality of the measurement) is $S / N=\sqrt{S}$, because the noise $N=\sqrt{S}$.
a) One way to increase S / N is to take multiple measurements of a source and combine them. In this case $S_{t o t}=\sum_{1}^{n} S_{i}$, for n such measurements. The noise becomes $N_{t o t}^{2}=\sum_{1}^{n} N_{i}^{2}=\sum_{1}^{n} S_{i}$, meaning the noise contributions add in quadrature.
Show that if $S_{0}=S_{t o t} / n$ that

$$
\frac{(S / N)_{t o t}}{(S / N)_{0}}=\frac{S_{t o t} / N_{t o t}}{S_{0} / N_{0}}=\sqrt{n}
$$

b) Consider a star that is a source of X-ray emission. Suppose that the X-ray photon rate $\dot{C}=0.1$ photons/second as measured by an X-ray detector. The measured signal is $S=\dot{C} \times t$, for t the exposure time. How much time is required to obtain a measurement with $S / N=12$?
c) From part (b), how many photons will have been collected?
d) In many cases measurements of astronomical sources also involve background noise. Let S be the source signal, B the background signal, and N the total noise. Suppose you measure source and background together with the instrument. The total signal is $s_{\text {tot }}=(S+B)$; the background signal B is measured separately off the source. Subtraction then gives you the source signal. But what is the noise for the source signal? (Remember: The background comes with background noise.) Formulate an expression for the S / N for the source alone.
6. Problem 5.1 of the text.
7. Problem 5.15 of the text.
8. Problem 6.7 of the text.

