HOMEWORK \#6

1. Problem 10.3 of the text.
2. Problem 10.13 of the text.
3. Problem 10.21 of the text.
4. Problem 13.7 of the text.
5. Problem 13.8 of the text.
6. Consider a population of stars spread through space. The stars obey a "luminosity function", $\psi(L)$, for L the luminosity of the star, and ψ the relative number of stars with a given value of L. Suppose the function has the form:

$$
\psi(L)=\psi_{0}\left(L / L_{0}\right)^{-\alpha}
$$

where L_{0} and α are constants.
a) Suppose L_{0} is the maximum luminosity of a star. Let L_{l} be the lowest luminosity of a star. If $\int \psi(L) d L=1$, determine the constant ψ_{0} in terms of L_{l} and L_{0}.
b) The apparent brightness of a star is called its flux, f, where

$$
f=\frac{L}{4 \pi r^{2}}
$$

with r the distance to the star. Astronomers measure flux and often conduct surveys in terms of flux. A star of known L for a given measured f will be at distance $r=\sqrt{L / 4 \pi f}$.
Suppose the number density of stars is constant throughout space with n_{0}. However, the distribution of stars in luminosity is $\psi(L)$, with $d n / d L=n_{0} \psi(L)$.
The number of stars in the interval of r to $r+d r$ is

$$
\frac{d N}{d r}=\int_{L_{l}}^{L_{0}} 4 \pi r^{2} \frac{d n}{d L} d L
$$

Derive $d N / d r$ as a function of r by solving the integration.
c) At a given radius, stars of a different luminosity have a different flux. Observational surveys are flux-limited, meaning telescopes see stars down to a minimum brightness (call it f_{0}). This means only stars with $f \geq f_{0}$ can be detected.
At some distance (call it r_{l}), the least luminous star will be at the flux limit f_{0}. That means that for $r>r_{l}$, the lower limit to the integral expression of part (b) is not L_{l} but instead $L(r)=4 \pi r^{2} f_{0}$. (In other words some stars are so far away that they are too faint to be seen!)
How does this affect $d N / d r$? Solve the equation

$$
\frac{d N}{d r}=\int_{L(r)}^{L_{0}} 4 \pi r^{2} n_{0} \psi(L) d L
$$

where $\alpha>1$ is assumed.
d) Make a rough sketch of $d N / d r$. Remember, Earth is at $r=0$. The faint limit of the survey is f_{0}. Let r_{0} be the greatest distance at which a star of L_{0} could be detected survey (so $r_{0}=\sqrt{L_{0} / 4 \pi f_{0}}$). So your sketch has 3 zones: $r<r_{l} ; r_{l} \leq r \leq r_{0}$; and $r>r_{0}$. It may help to recast your answer from part (c) in terms of radius r for the these zones. For example if the three zones are 1,2 , and 3 , then

$$
d N / d r=\left\{\begin{array}{l}
F_{1}(r) \\
F_{2}(r) \\
F_{3}(r)
\end{array}\right.
$$

