ASTROPHYSICS (ASTR 3415) Fall 2016 Prof Richard Ignace

HOMEWORK #6

- 1. Problem 10.3 of the text.
- 2. Problem 10.13 of the text.
- 3. Problem 10.21 of the text.
- 4. Problem 13.7 of the text.
- 5. Problem 13.8 of the text.
- 6. Consider a population of stars spread through space. The stars obey a "luminosity function", $\psi(L)$, for L the luminosity of the star, and ψ the relative number of stars with a given value of L. Suppose the function has the form:

$$\psi(L) = \psi_0 \left(L/L_0 \right)^{-\alpha},$$

where L_0 and α are constants.

- a) Suppose L_0 is the maximum luminosity of a star. Let L_l be the lowest luminosity of a star. If $\int \psi(L) dL = 1$, determine the constant ψ_0 in terms of L_l and L_0 .
- b) The apparent brightness of a star is called its flux, f, where

$$f = \frac{L}{4\pi r^2}$$

with r the distance to the star. Astronomers measure flux and often conduct surveys in terms of flux. A star of known L for a given measured f will be at distance $r = \sqrt{L/4\pi f}$.

Suppose the number density of stars is constant throughout space with n_0 . However, the distribution of stars in luminosity is $\psi(L)$, with $dn/dL = n_0\psi(L)$. The number of stars in the interval of r to r + dr is

$$\frac{dN}{dr} = \int_{L_l}^{L_0} 4\pi r^2 \,\frac{dn}{dL} \,dL$$

Derive dN/dr as a function of r by solving the integration.

c) At a given radius, stars of a different luminosity have a different flux. Observational surveys are flux-limited, meaning telescopes see stars down to a minimum brightness (call it f_0). This means only stars with $f \ge f_0$ can be detected.

At some distance (call it r_l), the least luminous star will be at the flux limit f_0 . That means that for $r > r_l$, the lower limit to the integral expression of part (b) is not L_l but instead $L(r) = 4\pi r^2 f_0$. (In other words some stars are so far away that they are too faint to be seen!)

How does this affect dN/dr? Solve the equation

$$\frac{dN}{dr} = \int_{L(r)}^{L_0} 4\pi r^2 \, n_0 \, \psi(L) \, dL.$$

where $\alpha > 1$ is assumed.

d) Make a rough sketch of dN/dr. Remember, Earth is at r = 0. The faint limit of the survey is f_0 . Let r_0 be the greatest distance at which a star of L_0 could be detected survey (so $r_0 = \sqrt{L_0/4\pi f_0}$). So your sketch has 3 zones: $r < r_l$; $r_l \le r \le r_0$; and $r > r_0$. It may help to recast your answer from part (c) in terms of radius r for the these zones. For example if the three zones are 1, 2, and 3, then

$$dN/dr = \begin{cases} F_1(r) \\ F_2(r) \\ F_3(r) \end{cases}$$