Coordinates and Change of Basis
 Linear Algebra
 MATH 2010

- Definition: If $B=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for a vector space V and $x=c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}$, then $c_{1}, c_{2}, \ldots, c_{n}$ are called the coordinates of x relative to the basis B. The coordinate vector is denoted

$$
[x]_{B}=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]
$$

- Example: The vector

$$
x=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

is the coordinate vector with respect to the standard basis $\{[1,0],[0,1]\}$

$$
x=\left[\begin{array}{l}
1 \\
2
\end{array}\right]=1\left[\begin{array}{l}
1 \\
0
\end{array}\right]+2\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

- Example: Let $B=\{[1,0],[1,2]\}$. Assume

$$
[x]_{B}=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

Find x relative to the standard basis $B^{\prime}=\{[1,0],[0,1]\}$.

$$
[x]_{B^{\prime}}=3\left[\begin{array}{l}
1 \\
0
\end{array}\right]+2\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
5 \\
4
\end{array}\right]
$$

- Example: Given

$$
x=\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right]
$$

relative to the standard basis, find $[x]_{B^{\prime}}$ where $B^{\prime}=\{[1,0,1],[0,-1,2],[2,3,-5]\}$.
We need to find c_{1}, c_{2}, and c_{3} such that

$$
x=c_{1} u_{1}+c_{2} u_{2}+c_{3} u_{3}
$$

or

$$
\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right]=c_{1}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{r}
0 \\
-1 \\
2
\end{array}\right]+c_{3}\left[\begin{array}{r}
2 \\
3 \\
-5
\end{array}\right]
$$

This leads to the linear system

$$
\left.\begin{array}{rlllll}
1 & = & c_{1} & & & +2 c_{3} \\
2 & = & & - & c_{2} & +3 c_{3} \\
-1 & = & c_{1} & + & 2 c_{2} & -
\end{array}\right)
$$

Solving the system we have

$$
\left[\begin{array}{rrr|r}
1 & 0 & 2 & 1 \\
0 & -1 & 3 & 2 \\
1 & 2 & -5 & -1
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & 0 & 2 & 1 \\
0 & 1 & -3 & -2 \\
0 & 2 & -7 & -2
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & 0 & 2 & 1 \\
0 & 1 & -3 & -2 \\
0 & 0 & -1 & 2
\end{array}\right] \rightarrow\left[\begin{array}{lll|r}
1 & 0 & 0 & 5 \\
0 & 1 & 0 & -8 \\
0 & 0 & 1 & -2
\end{array}\right]
$$

So,

$$
[x]_{B^{\prime}}=\left[\begin{array}{r}
5 \\
-8 \\
-2
\end{array}\right]
$$

- Transition Matrix We can write

$$
[x]_{B^{\prime}}=P^{-1}[x]_{B}
$$

where P is a transition matrix from B^{\prime} to B or P^{-1} is a transition matrix from B to B^{\prime}.

- Theorem: Let $B=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $B^{\prime}=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be two basis for \Re^{n}. Then the transition matrix P^{-1} from B to B^{\prime} can be found by using Gauss-Jordan elimination on the matrix

$$
\left[B^{\prime} \mid B\right] \rightarrow\left[I_{n} \mid P^{-1}\right]
$$

- Example: Let

$$
B=\{[1,0],[1,2]\}
$$

and

$$
B^{\prime}=\{[1,0],[0,1]\}
$$

Then the transition matrix is found by reducing:

$$
\left[\begin{array}{ll|ll}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 2
\end{array}\right]
$$

Notice, the left hand side is already I_{2}, so

$$
P^{-1}=\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right]
$$

Notice that if B^{\prime} is the standard basis, then $P^{-1}=B$!
For example, if

$$
[x]_{B}=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

Then

$$
[x]_{B^{\prime}}=P^{-1}[x]_{B}=\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\left[\begin{array}{l}
5 \\
4
\end{array}\right]
$$

- Example: Let

$$
B=\{[1,0,0],[0,1,0],[0,0,1]\}
$$

and

$$
B^{\prime}=\{[1,0,1],[0,-1,2],[2,3,-5]\}
$$

Find the transition matrix from B to B^{\prime} and use it to find $[x]_{B^{\prime}}$ where

$$
[x]_{B}=\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right]
$$

To find the matrix P^{-1} from B to B^{\prime} :

$$
\begin{aligned}
& {\left[B^{\prime} \mid B\right]=\left[\begin{array}{rrr|rrr}
1 & 0 & 2 & 1 & 0 & 0 \\
0 & -1 & 3 & 0 & 1 & 0 \\
1 & 2 & -5 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}
1 & 0 & 2 & 1 & 0 & 0 \\
0 & 1 & -3 & 0 & -1 & 0 \\
0 & 2 & -7 & -1 & 0 & 1
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{rrr|rrr}
1 & 0 & 2 & 1 & 0 & 0 \\
0 & 1 & -3 & 0 & -1 & 0 \\
0 & 0 & -1 & -1 & 2 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll|rrr}
1 & 0 & 0 & -1 & 4 & 2 \\
0 & 1 & 0 & \mid & 3 & -7 \\
0 & 0 & 1 & -3 \\
1 & -2 & -1
\end{array}\right]
\end{aligned}
$$

So,

$$
[x]_{B^{\prime}}=P^{-1}[x]_{B}=\left[\begin{array}{rrr}
-1 & 4 & 2 \\
3 & -7 & -3 \\
1 & -2 & -1
\end{array}\right]\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right]=\left[\begin{array}{r}
5 \\
-8 \\
-2
\end{array}\right]
$$

Notice that if B is the standard basis, then $P^{-1}=\left(B^{\prime}\right)^{-1}$!

- Example: Find the transition matrix from B to B^{\prime} for the following bases for \Re^{2} :

$$
B=\{[-3,2],[4,-2]\}
$$

and

$$
B^{\prime}=\{[-1,2],[2,-2]\}
$$

Ans:

$$
P^{-1}=\left[\begin{array}{ll}
-1 & 2 \\
-2 & 3
\end{array}\right]
$$

