Diagonal Matrices, Upper and Lower Triangular Matrices Linear Algebra **MATH 2010**

- Diagonal Matrices:
 - Definition: A diagonal matrix is a square matrix with zero entries except possibly on the main diagonal (extends from the upper left corner to the lower right corner).
 - **Examples:** The following are examples, of diagonal matrices:

$\frac{1}{2}$	0	0	0
Ō	3	0	0
0	0	0	0
0	0	0	4

- In general, a diagonal matrix is given by

$$A = \begin{bmatrix} d_1 & 0 & \dots & \dots & 0 \\ 0 & d_2 & 0 & \dots & 0 \\ 0 & \dots & \ddots & \dots & 0 \\ 0 & \dots & \dots & \ddots & 0 \\ 0 & \dots & \dots & \dots & d_k \end{bmatrix}$$

- Notation: A lot of the time, a diagonal matrix is referenced with a capital D (for diagonal).
- **Powers:** If D is a diagonal matrix, then D^n for n > 0 is given by

	$\begin{bmatrix} d_1^n \\ 0 \end{bmatrix}$	$\begin{array}{c} 0 \\ d_2^n \end{array}$	 0	 	0
$D^n =$	0		·		0
	0			·.	0
	0				d_k^n

- Inverses: A diagonal matrix D is invertible if and only if all the diagonal elements are nonzero. In this case, D^{-1} is given by

	$\begin{bmatrix} \frac{1}{d_1} \\ 0 \end{bmatrix}$	$\frac{1}{d_2}$	 0	· · · ·	0 - 0
$D^{-1} =$	0		·.		0
	0			·.	0
	0	•••	•••	•••	$\frac{1}{d_k}$ -

0]

- Example: Let

$$D = \begin{bmatrix} \frac{1}{2} & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$
$$D^{3} = \begin{bmatrix} (\frac{1}{2})^{3} & 0 & 0 & 0 \\ 0 & 3^{3} & 0 & 0 \\ 0 & 0 & 5^{3} & 0 \\ 0 & 0 & 0 & (-1)^{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{8} & 0 & 0 & 0 \\ 0 & 27 & 0 & 0 \\ 0 & 0 & 125 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$
$$D^{-1} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & \frac{1}{3} & 0 & 0 \\ 0 & 0 & \frac{1}{5} & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

and

Then

• Upper and Lower Triangular Matrices:

- Definition: An upper triangular matrix is a square matrix in which all entries below the main diagonal are zero (only nonzero entries are found above the main diagonal - in the upper triangle). A lower triangular matrix is a square matrix in which all entries above the main diagonal are zero (only nonzero entries are found below the main diagonal - in the lower triangle). See the picture below.

- Notation: An upper triangular matrix is typically denoted with U and a lower triangular matrix is typically denoted with L.

- Properties:

 $\begin{array}{l} 1. \ \left\{ \begin{array}{l} U^T = L \\ L^T = U \\ \\ \text{If you transpose an upper (lower) triangular matrix, you get a lower (upper) triangular matrix. \end{array} \right. \end{array}$

2. $\begin{cases} L_1 L_2 = L \\ U_1 U_2 = U \end{cases}$

The product of two lower (upper) triangular matrices if lower (upper) triangular.

3. A triangular matrix is invertible if and only if all diagonal entries are nonzero.

$$\begin{bmatrix} 1 & -5 & 3 & 4 \\ 0 & -2 & 1 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 is NOT invertible, and
$$\begin{bmatrix} 4 & 0 & 0 \\ 1 & 3 & 0 \\ 0 & 2 & 1 \end{bmatrix}$$
 IS invertible.