Diagonal Matrices, Upper and Lower Triangular Matrices
 Linear Algebra
 MATH 2010

- Diagonal Matrices:

- Definition: A diagonal matrix is a square matrix with zero entries except possibly on the main diagonal (extends from the upper left corner to the lower right corner).
- Examples: The following are examples, of diagonal matrices:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{llll}
\frac{1}{2} & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 4
\end{array}\right]
$$

- In general, a diagonal matrix is given by

$$
A=\left[\begin{array}{rrrrr}
d_{1} & 0 & \ldots & \ldots & 0 \\
0 & d_{2} & 0 & \ldots & 0 \\
0 & \ldots & \ddots & \ldots & 0 \\
0 & \ldots & \ldots & \ddots & 0 \\
0 & \ldots & \ldots & \ldots & d_{k}
\end{array}\right]
$$

- Notation: A lot of the time, a diagonal matrix is referenced with a capital D (for diagonal).
- Powers: If D is a diagonal matrix, then D^{n} for $n>0$ is given by

$$
D^{n}=\left[\begin{array}{rrrrr}
d_{1}^{n} & 0 & \ldots & \ldots & 0 \\
0 & d_{2}^{n} & 0 & \ldots & 0 \\
0 & \ldots & \ddots & \ldots & 0 \\
0 & \ldots & \ldots & \ddots & 0 \\
0 & \ldots & \ldots & \ldots & d_{k}^{n}
\end{array}\right]
$$

- Inverses: A diagonal matrix D is invertible if and only if all the diagonal elements are nonzero. In this case, D^{-1} is given by

$$
D^{-1}=\left[\begin{array}{rrrrr}
\frac{1}{d_{1}} & 0 & \ldots & \ldots & 0 \\
0 & \frac{1}{d_{2}} & 0 & \ldots & 0 \\
0 & \ldots & \ddots & \ldots & 0 \\
0 & \ldots & \ldots & \ddots & 0 \\
0 & \ldots & \ldots & \ldots & \frac{1}{d_{k}}
\end{array}\right]
$$

- Example: Let

$$
D=\left[\begin{array}{rrrr}
\frac{1}{2} & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 5 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

Then

$$
D^{3}=\left[\begin{array}{rrrr}
\left(\frac{1}{2}\right)^{3} & 0 & 0 & 0 \\
0 & 3^{3} & 0 & 0 \\
0 & 0 & 5^{3} & 0 \\
0 & 0 & 0 & (-1)^{3}
\end{array}\right]=\left[\begin{array}{rrrr}
\frac{1}{8} & 0 & 0 & 0 \\
0 & 27 & 0 & 0 \\
0 & 0 & 125 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

and

$$
D^{-1}=\left[\begin{array}{rrrr}
2 & 0 & 0 & 0 \\
0 & \frac{1}{3} & 0 & 0 \\
0 & 0 & \frac{1}{5} & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

- Upper and Lower Triangular Matrices:

- Definition: An upper triangular matrix is a square matrix in which all entries below the main diagonal are zero (only nonzero entries are found above the main diagonal - in the upper triangle). A lower triangular matrix is a square matrix in which all entries above the main diagonal are zero (only nonzero entries are found below the main diagonal - in the lower triangle). See the picture below.

Upper triangular matrix: U Lower triangular matrix: L

- Notation: An upper triangular matrix is typically denoted with U and a lower triangular matrix is typically denoted with L.
- Properties:

1. $\left\{\begin{array}{l}U^{T}=L \\ L^{T}=U\end{array}\right.$

If you transpose an upper (lower) triangular matrix, you get a lower (upper) triangular matrix.
2. $\left\{\begin{array}{l}L_{1} L_{2}=L \\ U_{1} U_{2}=U\end{array}\right.$

The product of two lower (upper) triangular matrices if lower (upper) triangular.
3. A triangular matrix is invertible if and only if all diagonal entries are nonzero.

$$
\left[\begin{array}{rrrr}
1 & -5 & 3 & 4 \\
0 & -2 & 1 & 0 \\
0 & 0 & 0 & 5 \\
0 & 0 & 0 & 1
\end{array}\right] \text { is NOT invertible, and }\left[\begin{array}{ccc}
4 & 0 & 0 \\
1 & 3 & 0 \\
0 & 2 & 1
\end{array}\right] \text { IS invertible. }
$$

