Diagonalization
 Linear Algebra
 MATH 2010

- The Diagonalization Problem: For a $n \mathrm{x} n$ matrix A, the diagonalization problem can be stated as, does there exist an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix?
- Terminology: If such a P exists, then A is called diagonalizable and P is said to diagonalize A.
- Theorem If A is a $n \mathrm{x} n$ matrix, then the following are equivalent:

1. A is diagonalizable.
2. A has n linearly independent eigenvectors.

- Procedure for Diagonalizing a Matrix:

Step 1 Find n linearly independent eigenvectors of A, say $\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{n}$.
Step 2 Form the matrix P having $\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{n}$ as its column vectors.
Step 3 The matrix $P^{-1} A P$ will then be diagonal with $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ as its diagonal entries, where λ_{i} is the eigenvalue corresponding to \mathbf{p}_{i}, for $i=1,2, \ldots, n$.

- Example: Find a matrix P, if possible, that diagonalizes

$$
A=\left[\begin{array}{rrr}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right]
$$

The eigenvalues and eigenvectors are given by $\lambda=1$ with corresponding eigenvector

$$
\mathbf{p}_{1}=\left[\begin{array}{r}
-2 \\
1 \\
1
\end{array}\right]
$$

and $\lambda=2$ with corresponding eigenvectors

$$
\mathbf{p}_{2}=\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right] \quad \text { and } \mathbf{p}_{3}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Since the matrix is 3×3 and has 3 eigenvectors, then A is diagonalizable and

$$
P=\left[\begin{array}{rrr}
-2 & -1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

and

$$
P^{-1} A P=\left[\begin{array}{rrr}
-1 & 0 & -1 \\
1 & 0 & 2 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{rrr}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right]\left[\begin{array}{rrr}
-2 & -1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

- Example: From the section on eigenvalues, we determined that $\lambda_{1}=1$ and $\lambda_{2}=2$ are eigenvalues of

$$
A=\left[\begin{array}{rrr}
1 & -2 & 1 \\
0 & 1 & 4 \\
0 & 0 & 2
\end{array}\right]
$$

with corresponding eigenvectors

$$
p_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \text { and } p_{2}=\left[\begin{array}{r}
-7 \\
4 \\
1
\end{array}\right]
$$

Since there are only 2 basis vectors for the eigenspace of A, and A is a 3×3 matrix, A is not diagonalizable.

- Theorem: If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are eigenvectors of A corresponding to distinct eigenvalues of $\lambda_{1}, \lambda_{2}, \ldots$, λ_{k}, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is a linearly independent set.
- Theorem: If an $n \mathrm{x} n$ matrix A has n distinct eigenvalues, then A is diagonalizable.
- Example: Find P, if possible that diagonalizes

$$
A=\left[\begin{array}{ll}
2 & 1 \\
3 & 0
\end{array}\right]
$$

and find the corresponding diagonal matrix D. We have eigenvalues $\lambda_{1}=3$ with corresponding eigenvector

$$
\mathbf{p}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

and $\lambda_{2}=-1$ with corresponding eigenvector

$$
\mathbf{p}_{2}=\left[\begin{array}{r}
-1 / 3 \\
1
\end{array}\right]
$$

Therefore,

$$
P=\left[\begin{array}{rr}
1 & -1 / 3 \\
1 & 1
\end{array}\right]
$$

and

$$
D=\left[\begin{array}{rr}
3 & 0 \\
0 & -1
\end{array}\right]
$$

- Example: Find P, if possible that diagonalizes

$$
A=\left[\begin{array}{rrr}
1 & -1 & -1 \\
1 & 3 & 1 \\
-3 & 1 & -1
\end{array}\right]
$$

and find the corresponding diagonal matrix D. The three eigenvalues for A are $\lambda_{1}=3, \lambda_{2}=2$, and $\lambda_{3}=-2$. The eigenvector for $\lambda_{1}=3$:

$$
\mathbf{p}_{1}=\left[\begin{array}{r}
-1 \\
1 \\
1
\end{array}\right]
$$

The eigenvector for $\lambda_{2}=2$:

$$
\mathbf{p}_{2}=\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]
$$

The eigenvector for $\lambda_{3}=-2$:

$$
\mathbf{p}_{3}=\left[\begin{array}{r}
1 / 4 \\
-1 / 4 \\
1
\end{array}\right]
$$

So,

$$
P=\left[\begin{array}{rrr}
-1 & -1 & \frac{1}{4} \\
1 & 0 & -\frac{1}{4} \\
1 & 1 & 1
\end{array}\right]
$$

and

$$
D=\left[\begin{array}{rrr}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & -2
\end{array}\right]
$$

- Definition: If λ_{0} is an eigenvalue of an $n \mathrm{x} n$ matrix A, then the dimension of the eigenspace (the number of eigenvectors) corresponding to λ_{0} is called the geometric multiplicity of λ_{0}. The number of times that $\lambda-\lambda_{0}$ appears as a factor in the characteristic polynomial of A is called the algebraic multiplicity.
- Theorem: If A is a square matrix, then

1. For every eigenvalue of A, the geometric multiplicity is less than or equal to the algebraic multiplicity
2. A is diagonalizable if and only if, for every eigenvalue, the geometric multiplicity is equal to the algebraic multiplicity.

- Computing powers: If A is an $n \mathrm{x} n$ matrix and P is an invertible matrix, then

$$
\left(P^{-1} A P\right)^{2}=P^{-1} A P P^{-1} A P=P^{-1} A^{2} P
$$

More generally,

$$
\left(P^{-1} A P\right)^{k}=P^{-1} A P P^{-1} A P=P^{-1} A^{k} P
$$

Therefore, if A is diagonalizable, then

$$
P^{-1} A^{k} P=\left(P^{-1} A P\right)^{k}=D^{k}
$$

thus

$$
A^{k}=P D^{k} P^{-1}
$$

- Example: Find A^{13} for

$$
A=\left[\begin{array}{rrr}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right]
$$

We found previously that

$$
P=\left[\begin{array}{rrr}
-2 & -1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

and

$$
D=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

Therefore,

$$
A^{13}=P D^{13} P^{-1}=\left[\begin{array}{rrr}
-2 & -1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{rrr}
1^{13} & 0 & 0 \\
0 & 2^{13} & 0 \\
0 & 0 & 2^{13}
\end{array}\right]\left[\begin{array}{rrr}
-1 & 0 & -1 \\
1 & 0 & 2 \\
1 & 1 & 1
\end{array}\right]=\left[\begin{array}{rrr}
-8190 & 0 & -16382 \\
8191 & 8192 & 8191 \\
8191 & 0 & 16383
\end{array}\right]
$$

- Definition An $n \mathrm{x} n$ matrix A is similar to an $n \mathrm{x} n$ matrix Q if there exists an invertible matrix P such that $P^{-1} A P=Q$.

