Eigenvalues
 Linear Algebra
 MATH 2010

- Importance: Eigenvalues is an important concept from Linear Algebra. Eigenvalues are used in population growth, differential equations, engineering, science and statistics to name a few places.
- The Eigenvalue Problem: For a $n \mathrm{x} n$ matrix A, the eigenvalue problem can be stated as, does there exist a nonzero vector x and a scalar λ such that

$$
A x=\lambda x
$$

In other words, $A x$ is a scalar multiple of x.

- Terminology: λ is called an eigenvalue of A and x is the corresponding eigenvector.
- Example: Verify that $\lambda=5$ is an eigenvalue of

$$
A=\left[\begin{array}{ll}
4 & 3 \\
1 & 2
\end{array}\right]
$$

with corresponding eigenvector

$$
x=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

To do this, we need to check if $A x=\lambda x$.

$$
A x=\left[\begin{array}{ll}
4 & 3 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
3 \\
1
\end{array}\right]=\left[\begin{array}{r}
15 \\
5
\end{array}\right]
$$

and

$$
\lambda x=5\left[\begin{array}{l}
3 \\
1
\end{array}\right]=\left[\begin{array}{r}
15 \\
5
\end{array}\right]
$$

These are equal, so $\lambda=5$ is an eigenvalue of A with corresponding eigenvector x.

- Example: Verify that $\lambda_{1}=1$ and $\lambda_{2}=2$ are eigenvalues of

$$
A=\left[\begin{array}{rrr}
1 & -2 & 1 \\
0 & 1 & 4 \\
0 & 0 & 2
\end{array}\right]
$$

with corresponding eigenvectors

$$
x_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \text { and } x_{2}=\left[\begin{array}{r}
-7 \\
4 \\
1
\end{array}\right]
$$

To verify λ_{1} :

$$
A x_{1}=\left[\begin{array}{rrr}
1 & -2 & 1 \\
0 & 1 & 4 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

and

$$
\lambda_{1} x_{1}=1\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

So, λ_{1} is an eigenvalue of A with corresponding eigenvector x_{1}.
To verify λ_{2} :

$$
A x_{1}=\left[\begin{array}{rrr}
1 & -2 & 1 \\
0 & 1 & 4 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{r}
-7 \\
4 \\
1
\end{array}\right]=\left[\begin{array}{r}
-14 \\
8 \\
2
\end{array}\right]
$$

and

$$
\lambda_{2} x_{2}=2\left[\begin{array}{r}
-7 \\
4 \\
1
\end{array}\right]\left[\begin{array}{r}
-14 \\
8 \\
2
\end{array}\right]
$$

So, λ_{2} is an eigenvalue of A with corresponding eigenvector x_{2}.

- Finding eigenvalues: The eigenvalue problem asks if there exists a nonzero vector x and scalar λ such that

$$
A x=\lambda x
$$

If we arrange the equation above, we have

$$
\lambda x-A x=(\lambda I-A) x=0
$$

So, we want to know if there exists a scalar λ and nonzero vector x which satisfies this homogeneous system. Recall that a homogeneous system $B x=0$ always has a solution. It has a unique solution, the trivial solution $x=0$, if $|B| \neq 0$. In this problem, we are looking for nozero vectors x, so we are looking for a solution to the system $B x=0$ where $|B|=0$. This is the only way to get a nontrivial solution. If

$$
|\lambda I-A|=0
$$

then $\lambda I-A$ is singular and there exists a nontrivial solution to $(\lambda I-A) x=0$. Therefore, we need to solve

$$
|\lambda I-A|=0
$$

for λ. This is called the characteristic equation. All values λ which satisfy the characteristic equation are called eigenvalues of A.

- Example: Let

$$
A=\left[\begin{array}{ll}
2 & 1 \\
3 & 0
\end{array}\right]
$$

Find all the eigenvalues of A. First of all, then find the matrix $\lambda I-A$.

$$
\lambda I-A=\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{ll}
2 & 1 \\
3 & 0
\end{array}\right]=\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]-\left[\begin{array}{ll}
2 & 1 \\
3 & 0
\end{array}\right]=\left[\begin{array}{rr}
\lambda-2 & -1 \\
-3 & \lambda
\end{array}\right]
$$

Then

$$
|\lambda I-A|=\left|\begin{array}{rr}
\lambda-2 & -1 \\
-3 & \lambda
\end{array}\right|=\lambda(\lambda-2)-3
$$

Then the characteristic equation is

$$
\lambda(\lambda-2)-3=0
$$

Solving this equation for λ :

$$
\begin{aligned}
\lambda(\lambda-2)-3 & =0 \\
\lambda^{2}-2 \lambda-3 & =0 \\
(\lambda-3)(\lambda+1) & =0
\end{aligned}
$$

Solving, we get $\lambda_{1}=3$ and $\lambda_{2}=-1$

- Finding eigenvectors: Once you have the eigenvalues for A, then to find the corresponding eigenvectors, you solve the system

$$
(\lambda I-A) x=0
$$

for x. Remember, since there will not be a unique solution, there will be ininitely many solutions (since we have found λ such that $\lambda I-A$ is singular). Therefore, there should ALWAYS be a paramter. If not, you have done something wrong - go back and check that you found the correct λ.

- Back to example: We found $\lambda_{1}=3$ and $\lambda_{2}=-1$ are eigenvalues for

$$
A=\left[\begin{array}{ll}
2 & 1 \\
3 & 0
\end{array}\right]
$$

Let's first find the corresponding eigenvector for $\lambda_{1}=3$: We need to first find $\lambda I-A=3 I-A$ which is given by

$$
3 I-A=\left[\begin{array}{rr}
3-2 & -1 \\
-3 & 3
\end{array}\right]=\left[\begin{array}{rr}
1 & -1 \\
-3 & 3
\end{array}\right]
$$

Now solve $(3 I-A) x=0$:

$$
\left[\begin{array}{rr|r}
1 & -1 & 0 \\
-3 & 3 & 0
\end{array}\right] \rightarrow_{R_{2} \leftrightarrow R_{2}+3 R_{1}}\left[\begin{array}{rr|r}
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Thus, $x_{2}=t$ is a free variable and $x_{1}=x_{2}=t$. Therefore,

$$
x_{1}=\left[\begin{array}{c}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Therefore, eigenvectors corresponding to $\lambda_{1}=3$ are scalar multiples of

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

For $\lambda_{2}=-1$, we need to first find $\lambda I-A=-I-A$ which is given by

$$
-I-A=\left[\begin{array}{rr}
-1-2 & -1 \\
-3 & -1
\end{array}\right]=\left[\begin{array}{ll}
-3 & -1 \\
-3 & -1
\end{array}\right]
$$

Now solve $(-I-A) x=0$:

$$
\left[\begin{array}{rr|l}
-3 & -1 & 0 \\
-3 & -1 & 0
\end{array}\right] \rightarrow_{R_{1} \leftrightarrow \frac{-1}{3} R_{1}}\left[\begin{array}{rr|r}
1 & 1 / 3 & 0 \\
-3 & -1 & 0
\end{array}\right] \rightarrow_{R_{2} \leftrightarrow R_{2}+3 R_{1}}\left[\begin{array}{rr|r}
1 & 1 / 3 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Thus, $x_{2}=t$ is a free variable and $x_{1}=-1 / 3 x_{2}=-1 / 3 t$. Therefore,

$$
x_{2}=\left[\begin{array}{r}
-1 / 3 t \\
t
\end{array}\right]=t\left[\begin{array}{r}
-1 / 3 \\
1
\end{array}\right]
$$

Therefore, eigenvectors corresponding to $\lambda_{2}=-1$ are scalar multiples of

$$
\left[\begin{array}{r}
-1 / 3 \\
1
\end{array}\right]
$$

- Example: Find the eigenvalues and eigenvectors for

$$
A=\left[\begin{array}{rrr}
1 & -1 & -1 \\
1 & 3 & 1 \\
-3 & 1 & -1
\end{array}\right]
$$

To find the eigenvalues:

$$
|\lambda I-A|=\left|\begin{array}{rrr}
\lambda-1 & 1 & 1 \\
-1 & \lambda-3 & -1 \\
3 & -1 & \lambda+1
\end{array}\right|
$$

Using the permutation approach:

$$
\begin{aligned}
|\lambda I-A| & =(\lambda-1)(\lambda-3)(\lambda+1)-2-[3(\lambda-3)+(\lambda-1)-(\lambda+1)] \\
& =\left(\lambda^{2}-4 \lambda+3\right)(\lambda+1)-2-[3 \lambda-9+\lambda-1-\lambda-1] \\
& =\lambda^{3}-3 \lambda^{2}-4 \lambda+12 \\
& =\lambda^{2}(\lambda-3)-4(\lambda-3) \\
& =(\lambda-3)\left(\lambda^{2}-4\right) \\
& =(\lambda-3)(\lambda-2)(\lambda+2)
\end{aligned}
$$

Therefore, to find the eigenvalues we need to solve $|\lambda I-A|=0$ which is

$$
(\lambda-3)(\lambda-2)(\lambda+2)=0 .
$$

Therefore, the three eigenvalues for A are $\lambda_{1}=3, \lambda_{2}=2$, and $\lambda_{3}=-2$. Finding the eigenvector for $\lambda_{1}=3$: We need to solve $\left(\lambda_{1} I-A\right) x=0$ for x. Substituting λ_{1} into the form above for $\lambda I-A$, we have the system

$$
\begin{aligned}
& {\left[\begin{array}{rrr|r}
2 & 1 & 1 & 0 \\
-1 & 0 & -1 & 0 \\
3 & -1 & 4 & 0
\end{array}\right] \quad \rightarrow_{R_{1} \leftrightarrow R_{2}} \quad\left[\begin{array}{rrr|r}
-1 & 0 & -1 & 0 \\
2 & 1 & 1 & 0 \\
3 & -1 & 4 & 0
\end{array}\right]} \\
& \rightarrow_{R_{1} \leftrightarrow-R_{1}}\left[\begin{array}{rrr|r}
1 & 0 & 1 & 0 \\
2 & 1 & 1 & 0 \\
3 & -1 & 4 & 0
\end{array}\right] \\
& \rightarrow \underset{\substack{R_{2} \leftrightarrow R_{2}-2 R_{1} \\
R_{3} \leftrightarrow R_{3}-3 R_{1}}}{ }\left[\begin{array}{rrr|r}
1 & 0 & 1 & 0 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0
\end{array}\right] \\
& \rightarrow_{R_{3} \leftrightarrow R_{3}+R_{2}}\left[\begin{array}{rrr|r}
1 & 0 & 1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

So, $x_{3}=t, x_{2}=x_{3}=t$, and $x_{1}=-x_{3}=-t$. (Remember, there should ALWAYS be a free variable when finding the eigenvector.) So, the eigenvector for $\lambda_{1}=3$ is any scalar multiple of

$$
\left[\begin{array}{r}
-1 \\
1 \\
1
\end{array}\right]
$$

Finding the eigenvector for $\lambda_{2}=2$: We need to solve $\left(\lambda_{2} I-A\right) x=0$ for x. Substituting λ_{2} into the form above for $\lambda I-A$, we have the system

$$
\begin{aligned}
{\left[\begin{array}{rrr|r}
1 & 1 & 1 & 0 \\
-1 & -1 & -1 & 0 \\
3 & -1 & 3 & 0
\end{array}\right] } & \begin{array}{l}
\rightarrow_{R_{3} \leftrightarrow R_{3}-3 R_{1}}^{R_{2}+R_{1}}
\end{array}\left[\begin{array}{rrr|r}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & -4 & 0 & 0
\end{array}\right] \\
& \rightarrow{ }_{R_{3} \leftrightarrow R_{2}}^{R_{3} \leftrightarrow-\frac{1}{4} R_{3}}
\end{aligned}\left[\begin{array}{lll:l}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

So, $x_{3}=t, x_{2}=0$, and $x_{1}=-x_{3}=-t$. So, the eigenvector for $\lambda_{2}=2$ is any scalar multiple of

$$
\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]
$$

Finding the eigenvector for $\lambda_{3}=-2$: We need to solve $\left(\lambda_{3} I-A\right) x=0$ for x. Substituting λ_{3} into the form above for $\lambda I-A$, we have the system

$$
\begin{aligned}
{\left[\begin{array}{rrr|l}
-3 & 1 & 1 & 0 \\
-1 & -5 & -1 & 0 \\
3 & -1 & -1 & 0
\end{array}\right] } & \rightarrow_{R_{2} \leftrightarrow R_{1}}\left[\begin{array}{rrr|r}
-1 & -5 & -1 & 0 \\
-3 & 1 & 1 & 0 \\
3 & -1 & -1 & 0
\end{array}\right] \\
& \rightarrow_{R_{1} \leftrightarrow-R_{1}}\left[\begin{array}{rrr|r}
1 & 5 & 1 & 0 \\
-3 & 1 & 1 & 0 \\
3 & -1 & -1 & 0
\end{array}\right] \\
& \rightarrow R_{3} \leftrightarrow R_{3}+R_{2}
\end{aligned} \begin{array}{llll}
{\left[\begin{array}{rrrr|r}
1 & 5 & 1 & 0 \\
-3 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& \rightarrow_{R_{2} \leftrightarrow R_{2}+3 R_{1}}\left[\begin{array}{rrrr|l}
1 & 5 & 1 & 0 \\
0 & -16 & -4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \rightarrow_{R_{2} \leftrightarrow-1 / 16 R_{2}}\left[\begin{array}{rrrr|}
1 & 5 & 1 & 0 \\
0 & 1 & \frac{1}{4} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{array}
$$

So, $x_{3}=t, x_{2}=-1 / 4 x_{3}=-1 / 4 t$, and $x_{1}=1 / 4 x_{3}=1 / 4 t$. So, the eigenvector for $\lambda_{3}=-2$ is any scalar multiple of

$$
\left[\begin{array}{r}
1 / 4 \\
-1 / 4 \\
1
\end{array}\right]
$$

- Example: Find the eigenvalues and corresponding eigenvectors for

$$
A=\left[\begin{array}{rrr}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right]
$$

Answer: eigenvalue $\lambda_{1}=2$ with eigenvectors

$$
\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right] \text { and }\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

and eigenvalue $\lambda_{2}=1$ with eigenvector

$$
\left[\begin{array}{r}
-2 \\
1 \\
1
\end{array}\right]
$$

- Eigenvalues of Upper Triangular, Lower Triangular, and Diagonal Matrices: If A is an $n x n$ triangular matrix (upper triangular, lower triangular, or diagonal), then the eigenvalues of A are the entries on the main diagonal of A
- Example: Using the matrix A from above,

$$
A=\left[\begin{array}{rrr}
1 & -2 & 1 \\
0 & 1 & 4 \\
0 & 0 & 2
\end{array}\right]
$$

We can easily pick off the eigenvalues of A since it is upper triangular. Thus, the eigenvalues are the elements on the diagonal of A, i.e. 1,1 , and 2 . So, A only has 2 distinct eigenvalues.

- Powers of a Matrix: If k is a positive integer, λ is an eigenvalue of a matrix A, and \mathbf{x} is a corresponding eigenvector, then λ^{k} is an eigenvalue of A^{k} and \mathbf{x} is a corresponding eigenvector.
- Example: From above we have that $\lambda=2$ and $\lambda=1$ are eigenvalues of

$$
A=\left[\begin{array}{rrr}
0 & 0 & -2 \\
1 & 2 & 1 \\
1 & 0 & 3
\end{array}\right]
$$

Therefore, both $\lambda=2^{7}=128$ and $\lambda=1^{7}=1$ are eigenvalues of A^{7} with

$$
\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right] \text { and }\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

as corresponding eigenvectors for $\lambda=2^{7}=128$ (the same eigenvectors for $\lambda=2$ from A and

$$
\left[\begin{array}{r}
-2 \\
1 \\
1
\end{array}\right]
$$

as the cooresponding eigenvector for $\lambda=1^{7}=1$.

- Eigenvalues and Invertibility: A square matrix A is invertible if and only if $\lambda=0$ is not and eigenvalue of A.
- Equivalent Statements: If A is an $n \times n$ matrix, then the following are equivalent:
(a) A is invertible
(b) $A x=0$ has only the trivial solution
(c) The reduced row-echelon form of A is I_{n}
(d) A is expressible as a product of elementary matrices
(e) $A x=b$ is consistent for every $n \mathrm{x} 1$ matrix b
(f) $A x=b$ has exactly one solution for every $n \mathrm{x} 1$ matrix b
(g) $|A| \neq 0$
(h) $\lambda=0$ is not an eigenvalue of A

