Elementary Matrices
 Linear Algebra
 MATH 2010

- Recall that there are three elementary row operations that can be performed on a system and still have an equivalent system:

1. interchange two rows
2. multiply a row by a nonzero constant
3. add a multiple of one row to another row

- If any of these three operations are performed on a matrix A to obtain a matrix B, then matrices A and B are said to be row equivalent.
- Matrix multiplication can also be used to carry out the elementary row operation.
- Elementary Matrix: An $n x n$ matrix is called an elementary matrix if it can be obtained from the $n \times n$ identity I_{n} by performing a single elementary row operation.
- Examples:
$-\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & -\frac{1}{3} & 0 \\ 0 & 0 & 1\end{array}\right]$ Elementary operation performed: multiply second row by $-\frac{1}{3}$.
$-\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]$ Elementary operation performed: interchanging rows 2 and 4.
- $\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1\end{array}\right]$ Elementary operation performed: adding -2 times the first row to the third row.
- Use of Elementary Matrices: Let A be a $m \mathrm{x} n$ matrix and let E be an $m \mathrm{x} m$ elementary matrix. Then the matrix multiplication $E A$ is the matrix that results when the same row operation is performed on A as that performed to produce the elementary matrix E. For example:

$$
A=\left[\begin{array}{rrr}
1 & -4 & 3 \\
0 & 2 & 0 \\
-1 & 3 & 7
\end{array}\right]
$$

The matrix

$$
E_{1}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

is the matrix found by adding -1 times the first row to the second row. Multiply $E_{1} A$, you get

$$
E_{1} A=\left[\begin{array}{rrr}
1 & -4 & 3 \\
-1 & 6 & -3 \\
-1 & 3 & 7
\end{array}\right]
$$

which is the same as if you had added -1 times row 1 of A to row 2 of A.

- Example: Let

$$
A=\left[\begin{array}{rrr}
3 & 4 & 1 \\
2 & -7 & -1 \\
8 & 1 & 5
\end{array}\right] \quad B=\left[\begin{array}{rrr}
8 & 1 & 5 \\
2 & -7 & -1 \\
3 & 4 & 1
\end{array}\right] \quad C=\left[\begin{array}{rrr}
3 & 4 & 1 \\
2 & -7 & -1 \\
2 & -7 & 3
\end{array}\right]
$$

Find elementary matrices E_{1}, E_{2}, E_{3}, and E_{4} such that

1. $E_{1} A=B$
2. $E_{2} B=A$
3. $E_{3} A=C$
4. $E_{4} C=A$

- Row reduction: The row reduction of a matrix A to row-echelon form H can be accomplished by successive multiplication on the left by elementary matrices:

$$
H=\left(E_{r} E_{r-1} \cdots E_{2} E_{1}\right) A
$$

- Example: Find a matrix C such that $C A$ is a matrix in row-echelon form that is row equivalen to A where C is a product of elementary matrices. We will consider the example from the Linear Systems section where

$$
A=\left[\begin{array}{rrrr}
1 & 2 & -1 & 4 \\
1 & 3 & 0 & 5 \\
2 & 7 & 2 & 9
\end{array}\right]
$$

So, begin with row reduction:

Original matrix Elementary row operation Resulting matrix Associated elementary matrix

$$
\begin{array}{llll}
{\left[\begin{array}{rrrr}
1 & 2 & -1 & 4 \\
1 & 3 & 0 & 5 \\
2 & 7 & 2 & 9
\end{array}\right]}
\end{array} \begin{array}{ll}
& \rightarrow_{R_{2} \leftrightarrow R_{2}+-1 R_{1}}
\end{array} \quad\left[\begin{array}{rrrr}
1 & 2 & -1 & 4 \\
0 & 1 & 1 & 1 \\
2 & 7 & 2 & 9
\end{array}\right] \quad E_{1}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Then

$$
C=E_{3} E_{2} E_{1}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{rrr}
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & -2 & 1
\end{array}\right]
$$

- Obviously, elementary matrices are not the most efficient way to perform Gaussian elemination. We will discuss elementary matrices a little more when we talk about inverses of a matrix.

