Inverses
 Linear Algebra
 MATH 2010

- For matrix addition, the matrix O is similar to the zero for real numbers, because

$$
\begin{aligned}
& A+O=A \\
& A-A=O
\end{aligned}
$$

- For matrix multiplication, I is similar to the scalar 1 in real numbers, because

$$
I A=A I=A
$$

- For scalar multiplication, however, there is also a reciprocal. For example,

$$
2 \cdot \frac{1}{2}=1
$$

For all real numbers c, we have

$$
c \cdot \frac{1}{c}=1
$$

We want to have a similar idea for matrices, we want a matrix such that when we multiply it with A, we get the identity I.

- Definition: A $n \mathrm{x} n$ matrix A is invertible (or nonsingular) if there exists a $n \mathrm{x} n$ matrix B such that $A B=B A=I_{n} . B$ is called the inverse of A and is denoted by A^{-1}.
- If the matrix A does not have an inverse, then A is said to be noninvertible (or nonsingular).
- Example: Show that

$$
B=\left[\begin{array}{rr}
-2 & 1 \\
\frac{3}{2} & -\frac{1}{2}
\end{array}\right]
$$

is the inverse of

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

In order to show the matrix B is the inverse of A, we need to show that both $A B=I$ and $B A=I$.

$$
A B=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{rr}
-2 & 1 \\
\frac{3}{2} & -\frac{1}{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

and

$$
B A=\left[\begin{array}{rr}
-2 & 1 \\
\frac{3}{2} & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

- Inverse for a 2×2 matrix: If A is 2×2, i.e.,

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

then A is invertible if and only if $a d-b c \neq 0$. In this case the inverse is given by

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

- Example: Let

$$
A=\left[\begin{array}{ll}
2 & 0 \\
1 & 3
\end{array}\right]
$$

Find A^{-1} if it exists.
The first thing to check is whether or not A^{-1} exists. Since it is a 2 x 2 matrix, we know A^{-1} exists if and only if $a d-b c \neq 0$.

$$
a d-b c=2(3)-0(1)=6 \neq 0
$$

so A^{-1} exists and is given by

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]=\frac{1}{6}\left[\begin{array}{rr}
3 & 0 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{rr}
\frac{1}{2} & 0 \\
-\frac{1}{6} & \frac{1}{3}
\end{array}\right]
$$

- Finding A^{-1} :
- To find A^{-1} for a general $n \mathrm{x} n$ matrix A, we want to find the matrix $X=A^{-1}$ such that

$$
A X=I(\text { or } X A=I)
$$

Let's first examine the 2 x 2 case in which we already know the form of the inverse. For example for

$$
A=\left[\begin{array}{ll}
-1 & 2 \\
-1 & 1
\end{array}\right]
$$

we want to find a matrix

$$
X=\left[\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right]
$$

such that

$$
A X=I
$$

or

$$
\left[\begin{array}{ll}
-1 & 2 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

If we multiply the left side out and set it equal to the right side, we get the systems

$$
\begin{aligned}
& -x_{11}+2 x_{12}=1 \\
& -x_{11}+x_{21}=0
\end{aligned} \begin{aligned}
& -x_{12}+2 x_{22}=0 \\
& -x_{12}+x_{22}=1
\end{aligned}
$$

Notice, that both systems have the same coefficient matrix:

$$
\left[\begin{array}{ll|l}
-1 & 2 & 1 \\
-1 & 1 & 0
\end{array}\right] \quad\left[\begin{array}{ll|l}
-1 & 2 & 0 \\
-1 & 1 & 1
\end{array}\right]
$$

So, we can solve the systems simultaneously:

$$
\left[\begin{array}{ll|ll}
-1 & 2 & 1 & 0 \\
-1 & 1 & 0 & 1
\end{array}\right]
$$

This is the same as solving

$$
[A \mid I]
$$

We can solve until we have reduced row echelon form on the left, then $X=A^{-1}$ will be on the right. In other words, if there is a unique solution, we can reduce so that we have

$$
[A \mid I] \rightarrow\left[I \mid A^{-1}\right] .
$$

- We can see this process a different way by looking at elementary matrices. If

$$
E_{k} E_{k-1} \cdots E_{2} E_{1} A=I_{n}
$$

then if A is invertible,

$$
A^{-1}=E_{k} E_{k-1} \cdots E_{2} E_{1} I_{n}
$$

by multiplying on the right by A^{-1} on both sides of the equation. This show exactly what we discussed previously, the same sequence of row operations that reduces A to I_{n} will transform I_{n} to A^{-1}.

- Example: Let's do this with the matrix above:

$$
\left.\begin{array}{rl}
{\left[\begin{array}{rr|rr}
-1 & 2 & 1 & 0 \\
-1 & 1 & \mid & 1
\end{array}\right]} & \rightarrow_{R_{1} \leftrightarrow-R_{1}}\left[\begin{array}{rr|rr}
1 & -2 & -1 & 0 \\
-1 & 1 & 0 & 1
\end{array}\right] \\
& \rightarrow_{R_{2} \leftrightarrow R_{2}+R_{1}}\left[\begin{array}{rr|rr}
1 & -2 & -1 & 0 \\
0 & -1 & -1 & 1
\end{array}\right]
\end{array} \begin{array}{l}
\rightarrow_{R_{2} \leftrightarrow-R_{2}}\left[\begin{array}{rr|rr}
1 & -2 & -1 & 0 \\
0 & 1 & 1 & -1
\end{array}\right] \\
\end{array} \rightarrow_{R_{1} \leftrightarrow R_{1}+2 R_{2}}\left[\begin{array}{ll|ll}
1 & 0 & 1 & -2 \\
0 & 1 & 1 & -1
\end{array}\right]\right)
$$

Thus,

$$
A^{-1}=\left[\begin{array}{ll}
1 & -2 \\
1 & -1
\end{array}\right]
$$

You can check that $A \cdot A^{-1}=I$. Using the 2 x 2 matrix way, we would have had

$$
A^{-1}=\frac{1}{-1(1)-2(-1)}\left[\begin{array}{ll}
1 & -2 \\
1 & -1
\end{array}\right]=\frac{1}{1}\left[\begin{array}{ll}
1 & -2 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
1 & -2 \\
1 & -1
\end{array}\right]
$$

This is the same as above.

- Example: Find the inverse, if it exists for the matrix

$$
A=\left[\begin{array}{rrr}
3 & 2 & 5 \\
2 & 2 & 4 \\
-4 & 4 & 0
\end{array}\right]
$$

So, set up the augmented system $[A \mid I]$ and reduce to $\left[I \mid A^{-1}\right]$.

$$
\begin{aligned}
& {\left[\begin{array}{rrr|rrr}
3 & 2 & 5 & 1 & 0 & 0 \\
2 & 2 & 4 & 0 & 1 & 0 \\
-4 & 4 & 0 & 0 & 0 & 1
\end{array}\right] \quad \xrightarrow{R_{1} \leftrightarrow R_{3}+R_{3}} \quad\left[\begin{array}{rrr|rrr}
-1 & 6 & 5 & 1 & 0 & 1 \\
2 & 2 & 4 & 0 & 1 & 0 \\
-4 & 4 & 0 & 0 & 0 & 1
\end{array}\right]} \\
& R_{1} \xrightarrow{\hookrightarrow}-R_{1} \\
& R_{2} \leftrightarrow R_{2}+-2 R_{1} \xrightarrow{\text { and }} R_{3} \leftrightarrow R_{3}+4 R_{1} \quad\left[\begin{array}{rrr|rrr}
1 & -6 & -5 & -1 & 0 & -1 \\
0 & 14 & 14 & 2 & 1 & 2 \\
0 & -20 & -20 & -4 & 0 & -3
\end{array}\right] \\
& \xrightarrow{R_{2} \leftrightarrow \frac{1}{14}} R_{2} \quad\left[\begin{array}{rrr|rrr}
1 & -6 & -5 & -1 & 0 & -1 \\
0 & 1 & 1 & \frac{1}{7} & \frac{1}{14} & \frac{1}{7} \\
0 & -20 & -20 & -4 & 0 & -3
\end{array}\right] \\
& R_{3} \leftrightarrow \xrightarrow{R_{3}+20 R_{2}} \\
& {\left[\begin{array}{rrr|rrr}
1 & -6 & -5 & -1 & 0 & -1 \\
0 & 1 & 1 & \frac{1}{7} & \frac{1}{14} & \frac{1}{7} \\
0 & 0 & 0 & -\frac{8}{7} & \frac{10}{7} & -\frac{1}{7}
\end{array}\right]}
\end{aligned}
$$

Since, the bottom row has all zeros to the left and nonzero to the right, it is impossible to reduce the A to I, hence A^{-1} does not exist. A is singular.

- Try to find A^{-1} given

$$
A=\left[\begin{array}{rrr}
1 & 2 & 2 \\
3 & 7 & 9 \\
-1 & -4 & -7
\end{array}\right]
$$

- Properties of A^{-1} :
$-\left(A^{-1}\right)^{-1}=A$
$-\left(A^{k}\right)^{-1}=\left(A^{-1}\right)^{k}$
$-(c A)^{-1}=\frac{1}{c} A^{-1}, c \neq 0$
$-\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
$-(A B)^{-1}=B^{-1} A^{-1}$
- Example: Given

$$
A^{-1}=\left[\begin{array}{rr}
2 & 5 \\
-7 & 6
\end{array}\right]
$$

find the following without computing A :

1. $\left(A^{T}\right)^{-1} ;$ Ans: $\left[\begin{array}{rr}2 & -7 \\ 5 & 6\end{array}\right]$
2. A^{-2}; Ans: $\left[\begin{array}{rr}-31 & 40 \\ -56 & 1\end{array}\right]$
3. $(2 A)^{-1}$; Ans: $\left[\begin{array}{rr}1 & \frac{5}{2} \\ -\frac{7}{2} & 3\end{array}\right]$
4. Given $B^{-1}=\left[\begin{array}{rr}7 & -3 \\ 2 & 0\end{array}\right]$, find $(A B)^{-1} ;$ Ans: $\left[\begin{array}{rr}35 & 17 \\ 4 & 10\end{array}\right]$

- Cancellation: If C is invertible, then
- If $A C=B C$, then $A=B$.

Proof:
$A C=B C$
$A C C^{-1}=B C C^{-1}$ since, C^{-1} exists, we can multiply the equation on the right by C^{-1}.
$A I=B I$ because by definition of inverse, $C C^{-1}=I$
$A=B$ because $A I=A$ for any matrix A by property of the identity matrix.

- If $C A=C B$, then $A=B$. (similar proof)
- Systems of Equations: Assume you have the system $A x=b$, then if A is invertible, there is a unique solution to the system given by

$$
x=A^{-1} b .
$$

Proof:

$A x=b$
$A^{-1} A x=A^{-1} b$ since, A^{-1} exists, we can multiply the equation on the left by A^{-1}.
$I x=A^{-1} b$ because by definition of inverse, $A A^{-1}=I$
$x=A^{-1} b$ because $I B=B$ for any matrix B by property of the identity matrix.

- Example: Solve the following system using an inverse matrix.

$$
\begin{aligned}
x_{1}+x_{2}-2 x_{3} & =0 \\
x_{1}-2 x_{2}+x_{3} & =0 \\
x_{1}-x_{2} & -x_{3}
\end{aligned}
$$

Using

$$
A=\left[\begin{array}{rrr}
1 & 1 & -2 \\
1 & -2 & 1 \\
1 & -1 & -1
\end{array}\right]
$$

we can find that A^{-1} exists and is given by

$$
A^{-1}=\left[\begin{array}{rrr}
2 / 3 & 1 / 3 & 0 \\
1 / 3 & -1 / 3 & 0 \\
-1 / 3 & -2 / 3 & 1
\end{array}\right]
$$

Thus, the unique solution to the system is given by

$$
x=A^{-1} b=\left[\begin{array}{rrr}
2 / 3 & 1 / 3 & 0 \\
1 / 3 & -1 / 3 & 0 \\
-1 / 3 & -2 / 3 & 1
\end{array}\right]\left[\begin{array}{r}
0 \\
0 \\
-1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Invertibility of Elementary Matrices: Every elementary matrix is invertible, and the inverse is also an elementary matrix.
- Equivalent Statements: If A is an $n \mathrm{x} n$ matrix, then the following are equivalent:
(a) A is invertible
(b) $A x=0$ has only the trivial solution
(c) The reduced row-echelon form of A is I_{n}
(d) A is expressible as a product of elementary matrices.
(e) $A x=b$ is consistent for every $n \mathrm{x} 1$ matrix b
(f) $A x=b$ has exactly one solution for every $n \mathrm{x} 1$ matrix b

