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• Overview of a Linear Equation and System of Linear Equations In general a linear equation
in n variables, namely x1, x2, ..., xn has the form

a1x1 + a2x2 + a3x3 + ... + anxn = b

where a1, a2, ..., an and b are all constant real numbers. All variables have an exponent of 1 with
a simple constant multiplying the variable. A system of linear equations is a set of 2 or more linear
equations.

• Categories of Possible Solutions of Linear Equations:

1. Unique Solution: There is a unique point (x1, x2, ..., xn) to the system of linear equations. For
example, the system

x + y = 2
3x − y = 0

is a linear system in two variables with a unique solution where the two lines intersect at the point
( 1
2 , 3

2 ). We can visualize this in Euclidean 2-space for a general linear system of two equation where
the two lines cross as a unique point:

2. No Solution: There is no point (x1, x2, ..., xn) which satisfy ALL the linear equations in the
system. For example, the system

x + y = 4
x + y = 3

is a linear system in two variables where the two lines are parallel (never cross). We can visualize
this in Euclidean 2-space for a general linear system of two equation where the two lines are
parallel with the same slope but different y-intercept:



3. Infinitely Many Solutions: There is are infinitely many points (x1, x2, ..., xn) which satisfy
ALL the linear equations in the system. For example, the system

x + y = 2
2x + 2y = 4

is a linear system in two variables where the two lines lie on top of each other. We can visualize
this in Euclidean 2-space for a general linear system of two equation where one equation is a
multiple of the other equation:

• Consistent vs. Inconsistent:

– Consistent: If a system of equations has at least one solution, then the system is called consistent.

– Inconsistent: If there are no solutions to the system of equations, then the system is called
inconsistent.

• Solution Set: The set of all solutions is called the solution set.

• Parametric Representation for Infinite Solutions: Consider the linear system of equations

3x − 4y = 1
6x − 8y = 2

The second equation is a multiple of the first equation, i.e., if you multiply the first equation 3x−4y = 1
by 2, you get the second equation 6x − 8y = 2. So, the solution set for the system is the same as
the solution set for the equation 3x − 4 = 1. We represent an infinite solution set using parametric
representation. To find the parametric representation in a two-variable system,



1. Assign one of the variables, typically the second variable in the equation, a parameter value such
as t or s, where the parameter can take on any real number. In this example, we can assign

y = t,

so the equation becomes 3x− 4t = 1.

2. Solve the equation for the other variable:

3x− 4t = 1→ 3x = 1 + 4t→ x =
1
3

+
4
3
t.

3. The solution set consists of all the points (x, y) to the system. Therefore, in this example, the
solution set is given by

(
1
3

+
4
3
t, t)

where t is any real number.

A particular solution can be found by setting t to some real number. For example, if we let t = −1,
then

(
1
3

+
4
3
t, t) = (

1
3

+
4
3

(−1),−1) = (−1,−1)

is a particular solution.

• Equivalent System: Now let’s find the solution sets to more complicated systems. Consider the
system

x + 2y − z = 4
x + 3y = 5

2x + 7y + 2z = 9

It is difficult to find the solution to this system in the given form. However, this system can be reduced
to the equivalent system

x + 2y − z = 4
y + z = 1

z = −2

The latter system can easily be solved using back-substitution:

z = −2→ y = 1− z = 1− (−2) = 3→ x = 4− 2y + z = 4− 2(3) + (−2) = −4.

There are three elementary row operations that can be performed on a system and still have an
equivalent system:

1. interchange two equations

2. multiply an equation by a nonzero constant

3. add a multiple of one equation to another equation

• Note that the solution can be checked by plugging in the answer into the original system.

• Augmented System: Let’s consider the system above again:

x + 2y − z = 4
x + 3y = 5

2x + 7y + 2z = 9

It can be written using only the coefficients by using matrices.



– Basic Definition and Notation for Matrices

∗ If m and n are positive integers, then an mxn matrix is a rectangular array of numbers
(entries)

m rows




a11 a12 a13 ... a1n

a21 a22 a23 ... a2n

...
...

...
...

am1 am2 am3 ... amn


︸ ︷︷ ︸

n columns

where aij is the number corresponding to the ith row and jth column. i is the row subscript
and j is the column subscript.

∗ The size of the matrix is mxn.
∗ Matrices are denoted by capital letters: A, B, C, etc.

– Back to System: The above system can as an augmented system by eliminating the variables
and simply using the coefficients:  1 2 −1 | 4

1 3 0 | 5
2 7 2 | 9


The equivalent system

x + 2y − z = 4
y + z = 1

z = −2

is written in augmented form by  1 2 −1 | 4
0 1 1 | 1
0 0 1 | −2


The latter augmented form is in row-echelon form.

• Row-echelon form: In general, a matrix is in row-echelon form if it has the following properties:

1. All row consisting of entirely zeros occur at the bottom of the matrix.

2. For each row that does not consist of entirely zeros, the first nonzero entry is 1 (this is called the
leading 1 or pivot).

3. For two successive (nonzero) rows, the leading 1 in the higher row is farther to the left than the
leading 1 in the lower row.

Which of the following matrices are in row-echelon form?

1.

 1 0 1 1
0 1 2 1
0 0 0 1

 Yes.

2.

 1 2 −3 0
0 0 0 1
0 0 0 0

 Yes.

3.

 −1 2 1
0 1 0
0 0 1

 No.

4.

 1 2 −1 2
0 0 0 0
0 1 2 −4

 No.

5.

 1 0 0 0
0 0 0 1
0 0 1 0

 No.



• Gaussian Elimination: Gaussian elimination is the process of reducing a system to row-echelon form
by performing the elementary row operations described above:

1. interchange two equations (or two rows in augmented form); typical notation for interchanging
row i and row j: Ri ↔ Rj .

2. multiply an equation by a nonzero constant (or multiply a row by a constant); typical notation
for multiplying row i by a nonzero constant c: Ri ↔ cRi.

3. add a multiple of one equation to another equation (or add a multiple of one row to another row);
typical notation for adding c times row j to row i: Ri ↔ Ri + cRj .

Let’s work through our example using the elementary row operations.

x + 2y − z = 4
x + 3y = 5

2x + 7y + 2z = 9

The associated augmented form is  1 2 −1 | 4
1 3 0 | 5
2 7 2 | 9


Starting with the augmented form, use the elementary operations to find the row-echelon form: 1 2 −1 | 4

1 3 0 | 5
2 7 2 | 9

 R2↔R2+−1R1→

 1 2 −1 | 4
0 1 1 | 1
2 7 2 | 9


R3↔R3+−2R1→

 1 2 −1 | 4
0 1 1 | 1
0 3 4 | 1


R3↔R3+−3R2→

 1 2 −1 | 4
0 1 1 | 1
0 0 1 | −2



Then the corresponding system is

x + 2y − z = 4
y + z = 1

z = −2

with solution (−4, 3,−2).

• Example: Consider the system

x1 + 3x2 − 2x3 + 2x5 = 0
2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = −1

5x3 + 10x4 + 15x6 = 5
2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 6

Augmented Form: 
1 3 −2 0 2 0 | 0
2 6 −5 −2 4 −3 | −1
0 0 5 10 0 15 | 5
2 6 0 8 4 18 | 6





Let’s reduce the following system:
1 3 −2 0 2 0 | 0
2 6 −5 −2 4 −3 | −1
0 0 5 10 0 15 | 5
2 6 0 8 4 18 | 6

 R2↔R2−2R1 and R4↔R4−2R1→


1 3 −2 0 2 0 | 0
0 0 −1 −2 0 −3 | −1
0 0 5 10 0 15 | 5
0 0 4 8 0 18 | 6



R2↔−R2→


1 3 −2 0 2 0 | 0
0 0 1 2 0 3 | 1
0 0 5 10 0 15 | 5
0 0 4 8 0 18 | 6



R3↔R3−5R2 and R4↔R4−4R2→


1 3 −2 0 2 0 | 0
0 0 1 2 0 3 | 1
0 0 0 0 0 0 | 0
0 0 0 0 0 6 | 2



R4↔ 1
6 R4 and R3↔R4→


1 3 −2 0 2 0 | 0
0 0 1 2 0 3 | 1
0 0 0 0 0 1 | 1

3
0 0 0 0 0 0 | 0



Now, to write down the solution, we need to determine which variables are free parameters and which
are dependent variables. Columns without a leading 1 or pivot correspond to free variables (see the
figure below).

So, let
x2 = r
x4 = s
x5 = t

Now, solve the systems for the remaining variables from the last equation to the first equation:

x1 + 3x2 − 2x3 + 2x5 = 0
x3 + 2x4 + + 3x6 = 1

+ x6 = 1
3

Plugging in the parameters, we have

x1 + 3r − 2x3 + 2t = 0
x3 + 2s + + 3x6 = 1

+ x6 = 1
3

Then,

x6 =
1
3



and
x3 + 2s + 3x6 = 1→ x3 = 1− 2s− 3(

1
3

)→ x3 = −2s

and

x1 + 3r − 2x3 + 2t = 0→ x1 = −3r + 2x3 − 2t→ x1 = −3r + 2(−2s)− 2t→ x1 = −3r − 4s− 2t.

Then the solution is given by:

(−3r − 4s− 2t, r,−2s, s, t,
1
3

).

• Example: Consider the simple system:

x − y = 1
−2x + 2y = 5

Reducing this system to row echelon form, we get[
1 −1 | 1
−2 2 | 5

]
R2↔R2+2R1→

[
1 −1 | 1
0 0 | 7

]
This gives the system

x − y = 1
0 = 7

This is not possible, so there is NO solution!!

• Problems: Solve the following problems using Gaussian Elimination

1.
x + 2y = 7

2x + y = 8
Ans: (3,2)

2.
−3x + 5y = −22

3x + 4y = 4
4x − 8y = 32

Ans: (4,-2)

3. −x + 2y = 3
2

2x − 4y = 3
Ans: No solution

4.
x1 + x2 − 5x3 = 3
x1 − 2x3 = 1

2x1 − x2 − x3 = 0
Ans: (1 + 2t, 2 + 3t, t)

5.

3x1 + 3x2 + 12x3 = 6
x1 + x2 + 4x3 = 2

2x1 + 5x2 + 20x3 = 10
−x1 + 2x2 + 8x3 = 4

Ans: (0, 2− 4t, t)



• Gauss-Jordan Reduction: Gauss-Jordan reduction reduces the system to reduced row-echelon form.
Reduced-echelon form has zeros above and below the leading ones (as opposed to simply below the
leading ones). Let’s look at the following example:

2x1 − x2 + 3x3 = 24
2x2 − x3 = 14

3x1 = 6

The augmented form is:  2 −1 3 | 24
0 2 −1 | 14
3 0 0 | 6


Notice that if we simply multiply the first equation by 1

2 to make the leading number in the first row a
1, you will encounter multiple fractions in the first row. You can perform any elementary row operation
in any order. So, we can instead subtract row 3 and row 1 first: 2 −1 3 | 24

0 2 −1 | 14
3 0 0 | 6

 R3↔R3−R2→

 2 −1 3 | 24
0 2 −1 | 14
1 1 −3 | −18


R2↔R3→

 1 1 −3 | −18
0 2 −1 | 14
2 −1 3 | 24


R3↔R3−2R1→

 1 1 −3 | −18
0 2 −1 | 14
0 −3 9 | 60


R3↔− 1

3 R3→

 1 1 −3 | −18
0 2 −1 | 14
0 1 −3 | −20


R2↔R3→

 1 1 −3 | −18
0 1 −3 | −20
0 2 −1 | 14


R3↔R3−2R2 and R1↔R1−R2→

 1 0 0 | 2
0 1 −3 | −20
0 0 5 | 54


R3↔ 1

5 R3→

 1 0 0 | 2
0 1 −3 | −20
0 0 1 | 54

5


R2↔R2+3R3→

 1 0 0 | 2
0 1 0 | 62

5
0 0 1 | 54

5



Therefore, the solution is (2, 62
5 , 54

5 ).



• Example: Use Gauss-Jordan reduction to find the solution to the following systems

1.
x + 2y = 0
x + y = 6

3x − 2y = 8
Ans: No solution.

2.
2x1 − x2 + 3x3 = 24

2x2 − x3 = 14
7x1 − 5x2 = 6

Ans: (8,10,6)

3.
x + 2y + z = 8

−3x − 6y − 3z = −21
Ans: No solution

4.
4x + 12y − 7z − 20w = 22
3x + 9y − 5z − 28w = 30

Ans: (100− 3s + 96t, s, 54 + 52t, t)

• Homogeneous System: A homogeneous system of equations is one in which the right hand side is
0. Example:

2x1 + 4x2 − 7x3 = 0
x1 − 3x2 + 9x3 = 0

6x1 + 9x3 = 0

EVERY homogeneous system of linear equations is consistent, because the trivial solution (0,0,...,0)
is always a solution. However, the system may have a unique solution (only the trivial solution) or
infinitely many solutions. If there are fewer equations than variables, then the system will always have
infinitely many solutions (there may be infinitely many solutions in other situations as well). Solving
the above system, we have 2 4 −7 | 0

1 −3 9 | 0
6 0 9 | 0

 R1↔R2→

 1 −3 9 | 0
2 4 −7 | 0
6 0 9 | 0


R2↔R2−2R1 and R3↔R3−6R1→

 1 −3 9 | 0
0 10 −25 | 0
0 18 −45 | 0


R2↔ 1

10 R2→

 1 −3 9 | 0
0 1 − 25

10 | 0
0 18 −45 | 0


R1↔R1+3R2 and R3↔R3−18R2→

 1 0 3
2 | 0

0 1 − 5
2 | 0

0 0 0 | 0



Hence, there is an infinite number of solutions with a free variable x3 = t and x1 = − 3
2 t and x2 = 5

2 t.
The solution set is then given by (− 3

2 t, 5
2 t, t).



• Problem: Find values of a, b, and c (if possible) such that the system of linear equations has

(a) a unique solution

(b) no solution

(c) an infinite number of solutions

1.

x + y = 2
y + z = 2

x + z = 2
ax + by + cz = 0

2.

x + y = 0
y + z = 0

x + z = 0
ax + by + cz = 0

• Span: Let va, v2, ..., vk be vectors in <n. The span of these vectors is the set of all linear combinations
of them and is denoted by sp(va, v2, ..., vk). In other words, a vector x is in the span of va, v2, ..., vk

if there exists c1, c2, ..., ck such that

x = c1v1 + c2v2 + ... + ckvk.

• Example: Determine whether b = [1,−7,−4] is in the span of the vectors v = [2, 1, 1] and w = [1, 3, 2].
To determine if b is in the span of {v, w}, we need to see if there exists scalars x1 and x2 such that

b = x1v + x2w.

Written out in a rearranged order, this is equivalent to finding x1 and x2 such that

x1

 2
1
1

+ x2

 1
3
2

 =

 1
−7
−4


or there is a solution to the system  2 1

1 3
1 2

[ x1

x2

]
=

 1
−7
−4


The augmented system is  2 1 | 1

1 3 | −7
1 2 | −4


which reduces to  1 0 | 2

0 1 | −3
0 0 | 0


Hence, there is a solution, x1 = 2, x2 = −3 to the system so b is in sp(v, w).

• Let A be an mxn matrix. The linear system Ax = b is consistent if and only if the vector b in <m is
in the span of the columns of A.


