Name:
You must show all work to receive full credit. All problems are 10 points each.

1. Given

$$
\mathbf{r}(t)=<2 \sin t, 5 t, 2 \cos t>
$$

find the following.
(a) the arclength parameterization of the curve
(b) the curvature of the curve
(c) the normal to the curve
2. Find the linear acceleration of the curve

$$
\mathbf{r}(t)=<t^{2}, t^{2}, t^{3}>
$$

3. Find

$$
\lim _{(x, y) \rightarrow(3,1)} \frac{x y-3 y-x+3}{x^{2} y^{2}-x^{2}-9 y^{2}+9}
$$

4. Determine if the following limit exists. If it does, calculate the limit. If it does not exist, show two paths along which the limit has different values.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}
$$

5. Find and sketch the domain of the function

$$
f(x, y)=\sqrt{x+y}-\sqrt{x-y}
$$

and determine if the domain is open, closed or neither; bounded or unbounded; and connected or not connected.
6. Find f_{x}, f_{y}, and $f_{x y}$ for

$$
f(x, y)=\ln \left(\sqrt{x^{2}+y^{2}}\right)
$$

7. Find the solution of

$$
2 y u_{x}+u_{y}=0
$$

8. Find the equation of the tangent plane to $z=f(x, y)$ where

$$
f(x, y)=x^{2}+y^{2}+4 y
$$

at the point $(0,1)$.
9. Find the quadratic approximation of

$$
f(x, y)=x e^{y}
$$

at the point $(1,0)$.
10. Find $\frac{\partial z}{\partial v}$ where $z=\cos (x y)+y \cos x, x=u^{2}+v$ and $y=u-v^{2}$.

