MATH 2110
 Test \# 3
 October 27, 2011

Name:
You must show all work to receive full credit.

1. (6 points) Sketch the level curves of the function

$$
f(x, y)=-2 y+3 x^{2}
$$

for $k=0,1,2$.
2. (12 points) Find the gradient of the function

$$
y^{5}+x^{2} y^{3}=x+y e^{x^{2}}
$$

implied by the level curve, and then show that it is perpendicular to the tangent line to the curve at the point $(0,-1)$.
3. Given the function

$$
f(x, y)=x e^{y}
$$

(a) (10 points) find the directional derivative of $f(x, y)$ in the direction of the vector $\vec{v}=<$ $-\frac{3}{2}, 2>$ at the point $(2,0)$.
(b) (6 points) find the direction of fastest increase of $f(x, y)$ at the point $(2,0)$, and then find the rate of change of the function when it is changing the fastest at the point $(2,0)$.
4. (12 points) Find the local extrema and saddle points of the function

$$
f(x, y)=x^{2}+y^{2}+x^{2} y+4
$$

5. (12 points) Use the method of Lagrange Multipliers to find the extrema of the function

$$
f(x, y)=x^{2} y
$$

subject to the constraint $x^{2}+2 y^{2}=6$.
6. (12 points) A rectangular box with a square bottom and an open top is to made from $12 \mathrm{~m}^{3}$ of cardboard. Use the method of Lagrange multipliers to determine what dimensions for the box yield the maximum volume?
7. (8 points) Write the linear transformation

$$
T(u, v)=<2 u+3 v, 3 u-2 v>
$$

in matrix form, then find the image in the $x y$-plane of the unit square in the $u v$-plane under the given transformation.
8. (10 points) Find the velocity vector in the uv-plane to the curve

$$
u=t, \quad v=-2 t
$$

Then find the Jacobian matrix and the tangent vector at the point $t=1$ to the image of the curve in the xy-plane where

$$
T(u, v)=<u^{2}+v^{2}, 4 u v^{2}>
$$

9. (12 points) Find the Jacobian determinant and area differential for the transformation

$$
T(u, v)=<4 u^{2}-v^{3}, u^{3}-4 u v^{2}>
$$

