MATH 2110

Test \# 4
November 17, 2011

Name:
You must show all work to receive full credit. All problems are 10 points each - BONUS problem on back.

1. Find the volume of the solid bound between the graphs of the functions $f(x, y)=0$ and $g(x, y)=2 x+y$ over

$$
\begin{array}{lll}
R: & x=0 & y=0 \\
& x=2 & y=2 x
\end{array}
$$

2. Evaluate the iterated integral

$$
\int_{0}^{\pi / 2} \int_{0}^{x} \cos x d y d x
$$

3. Evaluate the following iterated integral by changing it from type I to a type II:

$$
\int_{0}^{1} \int_{x}^{1} \frac{\sin \left(\frac{\pi y}{2}\right)-1}{y} d y d x
$$

4. Find the mass and center of mass of the lamina which occupies the region $[0,2] \mathrm{x}[0,3]$ with mass density function $\mu(x, y)=y$.
5. Use the coordinate transformation $T(u, v)=<u, u^{2} v>$ to evaluate

$$
\int_{1}^{2} \int_{0}^{x^{2}} \frac{1}{x^{2}+y} d y d x
$$

6. Evaluate by converting to polar coordinates

$$
\int_{0}^{1} \int_{x}^{\sqrt{2-x^{2}}} \frac{1}{\sqrt{x^{2}+y^{2}}} d y d x
$$

7. Find the polar function $r=f(\theta)$ represented by the Cartesian equation

$$
y=2 x-1
$$

8. Find the velocity vector $\mathbf{v}(\theta)$ at $\theta=\pi / 4$ for the polar function

$$
r=\cos (2 \theta)
$$

9. Find and describe the image of $S=[0,1] \mathrm{x}[0,1]$ under the transformation

$$
T(u, v)=<u-v, u v>.
$$

Then compute the area of the image.
10. Suppose $\rho(x, y, z)=x z(1-y)$ coulombs per cubic meter is the charge density of a "charge cloud"' contained in the "box"' given by $[0,1] \mathrm{x}[0,1] \mathrm{x}[0,1]$. What is the total charge inside the box?

BONUS (3 points) The manager of a movie theater determines that the average time moviegoers wait in line to buy a ticket for this weeks's film is 10 minutes and the average time they wait to buy popcorn is 5 minutes. If X and Y are the random variables for "waiting in line to buy a ticket" and "waiting in line to buy popcorn", respectively, then their probability density functions are given by

$$
p_{1}(x)=\left\{\begin{array}{cc}
0 & \text { if } x<0 \\
\frac{1}{10} e^{-x / 10} & \text { if } x \geq 0
\end{array} \quad p_{2}(y)=\left\{\begin{array}{cl}
0 & \text { if } y<0 \\
\frac{1}{5} e^{-y / 5} & \text { if } y \geq 0
\end{array}\right.\right.
$$

Assume the waiting times are independent. Set up the equation describing the probability that a moviegoer waits a total of less than 20 minutes before taking his or her seat. DO NOT EVALUATE - ONLY SET UP.

