Worksheet on Section 4.3-4.5
 MATH 2110
 November 11, 2011

1. Find the mass and center of mass of the lamina with the mass density

$$
\mu(x, y)=2 x \mathrm{~kg} \text { per square meter }
$$

over the region

$$
y=0, y=1, x=y, x=y^{2}
$$

Answer: $M=2 / 15 ; \bar{x}=15 / 28, \bar{y}=15 / 24$
2. Find the centroid of the region $y=0, y=1, x=0, x=\sin (\pi y)$. Answer: $\bar{x}=\pi / 8, \bar{y}=1 / 2$.
3. Show the following is a joint probability density function over the given sample space. Then find the expected values of the random variables X and Y.

$$
p(x, y)=4 x y ; \quad S=[0,1] \mathrm{x}[0,1]
$$

Ans: $E(X)=\frac{2}{3} ; E(Y)=\frac{2}{3}$
4. Find the describe the image of the region $S=[0,1] \mathrm{x}[0,1]$ under the transformation $T(u, v)=<u-v, u+v>$. Then compute the area of the image. Ans: 2
5. Use the given transformation to evaluate the given iterated integral
(a) $\int_{1}^{2} \int_{y}^{y+1} \frac{d x d y}{\sqrt{x y-y^{2}}} ; T(u, v)=<u+v, v>;$ Ans: $4 \sqrt{2}-4$
(b) $\int \sqrt{x y^{3}} d A ; T(u, v)=<\frac{u}{v}, u v>; R$ is bounded by $x y=1, x y=9, y=x, y=4 x$; Ans: 40
6. Evaluate the following by transforming to polar coordinates.
(a) $\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} \frac{x}{x^{2}+y^{2}} d x d y$; Ans: 1
(b) $\int_{0}^{1} \int_{1}^{\sqrt{2-y^{2}}} \frac{y}{x^{2}+y^{2}} d x d y$; Ans: $-1+\sqrt{2}+\ln (\sqrt{2} / 2)$
7. The curve

$$
r=4 \cos (3 \theta) ; \quad \theta \text { in }\left[0, \frac{2 \pi}{3}\right]
$$

is a polar curve whih enclosed a region that contains the origin. Find the area of the region the curve encloses. Ans: $\frac{8 \pi}{3}$

