Section 2.2
 Derivative of a Function
 MATH 1190

- The slope of the tangent line has a special name - the derivative at a point a. The derivative of a function f with respect to x is the function f^{\prime} defined by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

provided the limit exists.

- Notation for derivative:
- $f^{\prime}(x)$; $" f$ prime of $x "$
$-y^{\prime} ; " y$ prime"
$-\frac{d y}{d x}$; "dee y; dee x " or "derivative of y with respect to $x "$
$-\frac{d}{d x} f(x)$; "derivative of $f(x)$ with respect to $x "$
- Example: Determine $f^{\prime}(x)$ for $f(x)=2 x^{2}+3$

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Here $f(x+h)=2(x+h)^{2}+3=2\left(x^{2}+2 x h+h^{2}\right)+3=2 x^{2}+4 x h+2 h^{2}+3$. So,

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{2 x^{2}+4 x h+2 h^{2}+3-\left(2 x^{2}+3\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x^{2}+4 x h+2 h^{2}+3-2 x^{2}-3}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left.4 x h+2 h^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(4 x+2 h))}{h} \\
& =\lim _{h \rightarrow 0}(4 x+2 h) \\
& =4 x+2(0) \\
& =4 x
\end{aligned}
$$

- Example: Determine $f^{\prime}(x)$ for $f(x)=\frac{1}{x}$ and use this to find the tangent line to $f(x)$ at $x=3$

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Here $f(x+h)=\frac{1}{x+h}$, so

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h}\left(\frac{x(x+h)}{x(x+h)}\right) \\
& =\lim _{h \rightarrow 0} \frac{x-(x+h)}{h(x(x+h)} \\
& =\lim _{h \rightarrow 0} \frac{-h}{h(x(x+h)} \\
& =\lim _{h \rightarrow 0} \frac{-1}{(x(x+h)} \\
& =\lim _{h \rightarrow 0} \frac{-1}{(x(x+0)} \\
& =\frac{-1}{x^{2}}
\end{aligned}
$$

So, $f^{\prime}(x)=\frac{-1}{x^{2}}$, so the slope of the tangent line $f^{\prime}(3)=\frac{-1}{3^{2}}=\frac{-1}{9}$. To find the y value, plug $x=3$ into the original equation to get $y_{1}=f(3)=\frac{1}{3}$
So, we have

$$
y-y_{1}=m_{\tan }\left(x-x_{1}\right)
$$

or

$$
y-\frac{1}{3}=-\frac{1}{9}(x-3)
$$

which simplifies to

$$
y=-\frac{1}{9} x+\frac{2}{3}
$$

- Group Work

