Section 2.9
 Inverse Functions and Their Derivatives
 MATH 1190

- Look at the following graphs:

Recall from college algebra that to be a function, the graph must pass the vertical line test, i.e., there cannot be two y values for a single x value. The vertical line test says that no vertical line can cross the graph more than once. If you look at the graphs, notice the one in the middle is NOT a function. However, the other two graphs represents graphs of function.
In order, for a graph to be a one-to-one function, i.e, for every x value there is one and only one y value, the graph must also pass the horizontal line test. The horizontal line test says that no horizontal line can cross the graph more than once. Notice, that even though the first graph is a function (passes the vertical line test), it is NOT a one-to-one function, because it does not pass the horizontal line test.
The only graph which represents a one-to-one function is the third graph. It passes both the vertical (which means it is a function) and horizontal (which means it is one-to-one) line tests.

- A one-to-one function f has an inverse function, denoted f^{-1}. Note that $f^{-1} \neq \frac{1}{f}$!!.
- Some facts about inverse functions:
- the graph of an inverse function f^{-1} is found by reflecting the graph of f across the line $y=x$.
- In order to find f^{-1} if given f, you must following the following steps: use the example

$$
f(x)=\frac{1}{2} x+1
$$

1. Replace $f(x)$ with y :

$$
y=\frac{1}{2} x+1
$$

2. Switch the x and y values (this denotes the reflection of the graph across the line $y=x$):

$$
x=\frac{1}{2} y+1
$$

3. Solve for y :

$$
\begin{aligned}
& x=\frac{1}{2} y+1 \\
& x-1=\frac{1}{2} y \\
& 2(x-1)=y \\
& y=2 x-2
\end{aligned}
$$

4. Replace y with $f^{-1}(x)$:

$$
f^{-1}(x)=2 x-2
$$

- Also recall that $f^{-1}(f(x))=x$ and $f\left(f^{-1}(x)\right)=x$.
- Notice that since we are switching x and y, we are switching the domains and ranges of the functions as well, so we have
* domain of $f^{-1}=$ range of f
* range of $f^{-1}=$ domain of f
- Notice, if $y=f(x)$, then $x=f^{-1}(y)$ since the values of x and y are switched. Therefore, if $f(a)=b$ like in the graph below, we also know $f^{-1}(b)=a$.

- Recall the example above: If

$$
f(x)=\frac{1}{2} x+1
$$

then

$$
f^{-1}(x)=2 x-2
$$

Thus,

$$
\frac{d}{d x}(f(x))=\frac{d}{d x}\left(\frac{1}{2} x+1\right)=\frac{1}{2}
$$

and

$$
\frac{d}{d x}\left(f^{-1}(x)\right)=\frac{d}{d x}(2 x-2)=2
$$

Thus, the derivatives are reciprocals of each other.

Notice in the graph above that the tangent lines to the graphs are reflected across the line $y=x$, thus we have:

$$
\left(f^{-1}\right)^{\prime}(b)=\frac{1}{f^{\prime}(a)}=\frac{1}{f^{\prime}\left(f^{-1}(b)\right)}
$$

because $a=f^{-1}(b)$. In other words:

$$
\left.\frac{d f^{-1}}{d x}\right|_{x=b}=\frac{1}{\left.\frac{d f}{d x}\right|_{x=a}}
$$

- Example: $f(x)=\frac{1}{5} x+7$. Evaluate $\frac{d f}{d x}$ at $x=-1$ and $\frac{d f^{-1}}{d x}$ at $x=f(-1)$.

Start by taking the derivative of the original function.

$$
\frac{d f}{d x}=\frac{1}{5}
$$

so

$$
\frac{d f}{d x}(-1)=\frac{1}{5}
$$

To find $\frac{d f^{-1}}{d x}$ at $f(-1)$, we need to simply use the formula above:

$$
\left.\frac{d f^{-1}}{d x}\right|_{x=b=f(a)}=\frac{1}{\left.\frac{d f}{d x}\right|_{x=a}}
$$

In our problem this means:

$$
\left.\frac{d f^{-1}}{d x}\right|_{x=f(-1)}=\frac{1}{\left.\frac{d f}{d x}\right|_{x=-1}}=\frac{1}{\frac{1}{5}}=5
$$

In other words, we found $\left.\frac{d f}{d x}\right|_{x=-1}=\frac{d f}{d x}(-1)=\frac{1}{5}$, so the derivative of the inverse function at $x=f(-1)$ is simply the reciprocal. Note: there was no need to actually find the formula for $f^{-1}(x)$.

- Example: $f(x)=2 x^{2}, x \geq 0$. Find $\frac{d f^{-1}}{d x}$ at $f(5)$.

$$
f^{\prime}(x)=4 x
$$

So,

$$
f^{\prime}(5)=20
$$

Thus,

$$
\left.\frac{d f^{-1}}{d x}\right|_{x=f(5)}=\frac{1}{20}
$$

