Section 2.3
 Differentiation Rules
 MATH 1190

- Derivative of a Constant Function Note that if you have a constant function, for example, $f(x)=6$. The graph is a horizontal line. The slope of a horizontal line is 0 , and the tangent to any horizontal line is also a horizontal line. Therefore, the slope of the tangent line (i.e., the derivative) at any point is 0 , so you have

$$
\frac{d}{d x}(k)=0 \text { for any constant } k
$$

- Power Rule Using the definition of derivative, we can show:

$$
\frac{d}{d x}\left(x^{2}\right)=2 x \frac{d}{d x}\left(x^{3}\right)=3 x^{2} \quad \frac{d}{d x} \frac{1}{x}=\frac{d}{d x} x^{-1}=-x^{-2}=-\frac{1}{x^{2}}
$$

The pattern shows the following rule:

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \text { where } n \text { is any real number }
$$

- Examples: Find $f^{\prime}(x)$ for the following functions.

1. $f(x)=x^{5}$

$$
f^{\prime}(x)=5 x^{4}
$$

2. $f(x)=\sqrt{x}$ First rewrite $f(x)=x^{1 / 2}$. Then

$$
f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}=\frac{1}{2 x^{1 / 2}}
$$

3. $f(x)=\sqrt[3]{x^{2}}$ First rewrite $f(x)=x^{2 / 3}$. Then

$$
f^{\prime}(x)=\frac{2}{3} x^{-1 / 3}=\frac{2}{3 x^{1 / 3}}
$$

4. $f(x)=\frac{1}{x^{2}}$ First rewrite $f(x)=x^{-2}$. Then

$$
f^{\prime}(x)=-2 x^{-3}=\frac{-2}{x^{3}}
$$

- Constant Multiple Rule: Since the constant does not depend on x, you can take it out:

$$
\frac{d}{d x}(c \cdot f(x))=c \cdot \frac{d}{d x} f(x)
$$

Example: Find $f^{\prime}(x)$ where

$$
f(x)=\frac{x^{5}}{3}
$$

Notice that

$$
f(x)=\frac{1}{3} x^{5}
$$

SO

$$
f^{\prime}(x)=\frac{1}{3} \frac{d}{d x}\left(x^{5}\right)=\frac{1}{3}\left(5 x^{4}\right)=\frac{5}{3} x^{4}
$$

$$
\frac{d}{d x}\left(c x^{n}\right)=n \cdot c x^{n-1}
$$

Example: Given

$$
f(x)=\frac{2}{3} \sqrt[5]{x}
$$

find $f^{\prime}(x)$.
Rewrite $f(x)=\frac{2}{3} x^{1 / 5}$. Then

$$
\begin{gathered}
f^{\prime}(x)=\frac{2}{5} \cdot \frac{1}{5} x^{-4 / 5}=\frac{2}{15 x^{4 / 5}} \\
\frac{d}{d x}(c x)=c
\end{gathered}
$$

Example: $\frac{d}{d x}(100 x)=100$

- Sum and Difference Rule:

$$
\frac{d}{d x}(f(x) \pm g(x))=\frac{d}{d x} f(x) \pm \frac{d}{d x} g(x)
$$

- Examples: Find $f^{\prime}(x)$.

1. $f(x)=x^{3}+6 x-3$

$$
\frac{d}{d x}\left(x^{3}+6 x-3\right)=\frac{d}{d x}\left(x^{3}\right)+\frac{d}{d x}(6 x)-\frac{d}{d x}(3)=3 x^{2}+6-0=3 x^{2}+6
$$

2. $f(x)=3 x^{4}+2 \sqrt{x}-\frac{2}{x^{2}}$ Rewrite:

$$
f(x)=3 x^{4}+2 x^{1 / 2}-2 x^{-2}
$$

Then

$$
f^{\prime}(x)=12 x^{3}+2 \cdot \frac{1}{2} x^{-1 / 2}-2 \cdot(-2) x=12 x^{3}+\frac{1}{x^{1 / 2}}+4 x
$$

- Higher Order Derivatives

- Second derivative: $f^{\prime \prime}(x)=\frac{d}{d x}\left(f^{\prime}(x)\right)$
- Third derivative: $f^{\prime \prime \prime}(x)=\frac{d}{d x}\left(f^{\prime \prime}(x)\right)$
- Fourth derivative: $f^{(4)}(x)=\frac{d}{d x}\left(f^{\prime \prime \prime}(x)\right)$
- $n^{\text {th }}$ derivative: $f^{(n)}(x)=\frac{d}{d x}\left(f^{(n-1)}(x)\right.$
- Example: $f(x)=\frac{x^{3}}{3}+\frac{x^{2}}{2}+\frac{x}{4}=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+\frac{1}{4} x$

Then the first derivative is found by

$$
f^{\prime}(x)=x^{2}+x+\frac{1}{4}
$$

The second derivative is

$$
f^{\prime \prime}(x)=2 x+1
$$

Third derivative:

$$
f^{\prime \prime \prime}(x)=2
$$

and the fourth derivative and all those greater than 4 are:

$$
f^{(n)}(x)=0, n \geq 4
$$

- Example: Find the equation for horizontal tangents to the curve

$$
y=x^{3}-3 x-2
$$

For a horizontal tangent line, the slope has to be 0 . The slope of the tangent line is given by the derivative at a point c, i.e., $f^{\prime}(c)$. First find the derivative and then find the values $x=c$ where $f^{\prime}(c)=0$.

$$
f^{\prime}(x)=3 x^{2}-3
$$

We need to find c such that

$$
f^{\prime}(c)=3 c^{2}-3=0
$$

Solving, we get

$$
3\left(c^{2}-1\right)=3(c-1)(c+1)=0
$$

Solving for c, we get $c=1, c=-1$. We need to find the equation for the tangent line for each of these.

- For $x=1$. To find the y value, plug $x=1$ into the original equation: $y=1^{3}-3(1)-2=-4$. So, the equation for the tangent line is:

$$
y-(-4)=0(x-1)
$$

or

$$
y=-4
$$

- For $x=-1$. To find the y value, plug $x=-1$ into the original equation: $y=(-1)^{3}-3(-1)-2=0$. So, the equation for the tangent line is:

$$
y-0=0(x-1)
$$

or

$$
y=0
$$

- Example: Find $\frac{d s}{d t}$ if

$$
s=\frac{t^{2}+5 t-1}{t^{2}}
$$

We only know what to do if we have functions adding or subtracting each other, so we must split it up

$$
s=\frac{t^{2}}{t^{2}}+\frac{5 t}{t^{2}}-\frac{1}{t^{2}}=1+\frac{5}{t}-\frac{1}{t^{2}}=1+5 t^{-1}-t^{-2}
$$

Then

$$
\frac{d s}{d t}=-5 t^{-2}+2 t^{-3}=-\frac{5}{t^{2}}+\frac{2}{t^{3}}
$$

- Group Work - worksheet Part II
- Derivatives of Products: If $u(x)$ and $v(x)$ are differentiable at x, then

$$
\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

The way I look at it

$$
\frac{d}{d x}(\text { first } \cdot \text { second })=\text { first } \frac{d}{d x}(\text { second })+\text { second } \frac{d}{d x}(\text { first })
$$

- Example: Find y^{\prime} if

$$
y=\left(3+x^{2}\right) x^{4}
$$

Using the product rule, you have

$$
\begin{aligned}
\frac{d y}{d x} & =\left(3+x^{2}\right) \frac{d}{d x}\left(x^{4}\right)+x^{4} \frac{d}{d x}\left(3+x^{2}\right) \\
& =\left(3+x^{2}\right)\left(4 x^{3}\right)+x^{4}(2 x) \\
& =12 x^{3}+6 x^{5}
\end{aligned}
$$

- Example: Find y^{\prime} if

$$
y=\left(x+\frac{1}{x}\right)\left(x-\frac{1}{x}+1\right)
$$

We can rewrite

$$
y=\left(x+x^{-1}\right)\left(x-x^{-1}+1\right)
$$

then

$$
\begin{aligned}
y^{\prime} & =\left(x+x^{-1}\right) \frac{d}{d x}\left(x-x^{-1}+1\right)+\left(x-x^{-1}+1\right) \frac{d}{d x}\left(x+x^{-1}\right) \\
& =\left(x+x^{-1}\right)\left(1+x^{-2}\right)+\left(x-x^{-1}+1\right)\left(1-x^{-2}\right) \\
& =\left(x+\frac{1}{x}\right)\left(1+\frac{1}{x^{2}}\right)+\left(x-\frac{1}{x}+1\right)\left(1-\frac{1}{x^{2}}\right)
\end{aligned}
$$

- Suppose u and v are differentiable functions of x and $u(1)=2, u^{\prime}(1)=0, v(1)=5$, and $v^{\prime}(1)=-1$.

Find

$$
\frac{d}{d x}(7 v(x)-2 u(x))
$$

and

$$
\frac{d}{d x}(u(x) \cdot v(x))
$$

at $x=1$.

$$
\frac{d}{d x}(7 v(x)-2 u(x))=7 v^{\prime}(x)-2 u^{\prime}(x)
$$

so at $x=1$, we had

$$
7 v^{\prime}(1)-2 u^{\prime}(1)=7(-1)-2(0)=-7
$$

For the second one:

$$
\frac{d}{d x}(u(x) \cdot v(x))=u(x) v^{\prime}(x)+v(x) u^{\prime}(x)
$$

so at $x=1$, we have

$$
u(1) v^{\prime}(1)+v(1) u^{\prime}(1)=2(-1)+5(0)=-2
$$

- Quotient Rule: If $u(x)$ and $v(x)$ are differentiable at x, then

$$
\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
$$

The way I look at it

$$
\frac{d}{d x}\left(\frac{\text { top }}{\text { bottom }}\right)=\frac{\operatorname{bottom} \frac{d}{d x}(\text { top })-\operatorname{top} \frac{d}{d x}(\text { bottom })}{(\text { bottom })^{2}}
$$

- Example: Find $f^{\prime}(x)$ if

$$
f(x)=\frac{x^{2}}{2 x-1}
$$

Using the quotient rule:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(2 x-1) \frac{d}{d x}\left(x^{2}\right)-x^{2} \frac{d}{d x}(2 x-1)}{(2 x-1)^{2}} \\
& =\frac{(2 x-1)(2 x)-x^{2}(2)}{(2 x-1)^{2}} \\
& =\frac{4 x^{2}-2 x-2 x^{2}}{(2 x-1)^{2}} \\
& =\frac{2 x^{2}-2}{(2 x-1)^{2}}
\end{aligned}
$$

- Example: Find $s^{\prime}(t)$ if

$$
s(t)=\frac{t^{2}+t+1}{t+1}
$$

Using the quotient rule,

$$
\begin{aligned}
s^{\prime}(t) & =\frac{(t+1) \frac{d}{d t}\left(t^{2}+t+1\right)-\left(t^{2}+t+1\right) \frac{d}{d t}(t+1)}{(t+1)^{2}} \\
& =\frac{(t+1)(2 t+1)-\left(t^{2}+t+1\right)(1)}{(t+1)^{2}} \\
& =\frac{2 t^{2}+3 t+1-\left(t^{2}+t+1\right)}{(t+1)^{2}} \\
& =\frac{\left.2 t^{2}+3 t+1-t^{2}-t-1\right)}{(t+1)^{2}} \\
& =\frac{t^{2}+2 t}{(t+1)^{2}}
\end{aligned}
$$

- Example: If you have

$$
f(x)=\frac{5 x+1}{2 \sqrt{x}}
$$

you can use the quotient rule, but the easiest way to find $f^{\prime}(x)$ is to simplify the fraction.

$$
f(x)=\frac{5 x}{2 x^{1 / 2}}+\frac{1}{2 x^{1 / 2}}=\frac{5}{2} x^{1 / 2}+\frac{1}{2} x^{-1 / 2}
$$

So,

$$
f^{\prime}(x)=\frac{5}{4} x^{-1 / 2}-\frac{1}{4} x^{-3 / 2}=\frac{5}{4 x^{1 / 2}}-\frac{1}{4 x^{3 / 2}}
$$

- Group Work - worksheet Part III

