Section 2.6
 Exponential Functions
 MATH 1190

- Exponential functions have the form $f(x)=a^{x}$, where a is the base, x is the exponent; $a \neq 1, a>0$.

$$
a^{n}=\underbrace{a \cdot a \cdot a \cdots a}_{n \text { times }}
$$

- The natural exponential function is given by $f(x)=e^{x}$ where

$$
e^{1} \approx 2.718281828 \ldots
$$

Graph of $f(x)=e^{x}$:

- Rules for Exponents: If $a>0$ and $b>0$, the the following rules hold for all real numbers x and y.

1. $a^{x} \cdot a^{y}=a^{x+y}$
2. $\frac{a^{x}}{a^{y}}=a^{x-y}$
3. $\left(a^{x}\right)^{y}=a^{x y}$
4. $a^{x} \cdot b^{x}=(a b)^{x}$
5. $\frac{a^{x}}{b^{x}}=\left(\frac{a}{b}\right)^{x}$

- Derivative of the natural exponential function:

$$
\frac{d}{d x} e^{x}=e^{x}
$$

- Example: Let $y=x e^{-x}$, find y^{\prime}.

$$
y=x e^{-x}=x \cdot \frac{1}{e^{x}}=\frac{x}{e^{x}}
$$

$$
\begin{aligned}
y^{\prime} & =\frac{e^{x} \frac{d}{d x}(x)-x \frac{d}{d x}\left(e^{x}\right)}{\left(e^{x}\right)^{2}} & & \text { Quotient Rule } \\
& =\frac{e^{x}(1)-x e^{x}}{e^{2 x}} & & \text { Taking the derivative of the individual pieces } \\
& =\frac{e^{x}-x e^{x}}{e^{2 x}} & & \text { Simplifying } \\
& =\frac{e^{x}(1-x)}{e^{2 x}} & & \text { Factoring out } e^{x} \\
& =\frac{1-x}{e^{x}} & & \text { Simplifying }
\end{aligned}
$$

- Example: Let $f(x)=\sqrt[3]{x^{9.6}}+2 e^{1.3}$, find $f^{\prime}(x)$.

$$
\begin{gathered}
f(x)=\left(x^{9.6}\right)^{1 / 3}+2 e^{1.3}=x^{9.6 / 3}+2 e^{1.3}=x^{3.2}+2 e^{1.3} \\
f^{\prime}(x)=3.2 x^{3.2-1}+0=3.2 x^{2.2}
\end{gathered}
$$

because $2 e^{1.3}$ does not have an x in it, it is a constant and $\frac{d}{d x}(c)=0$ for any constant c. Also, $\frac{d}{d x}\left(x^{3.2}\right)$ is taken like any other $x^{n}: \frac{d}{d x} x^{n}=n x^{n-1}$.

- Group Work:

1. In groups, find the derivative of the following functions:
(a) $y=\frac{1}{\sqrt[5]{x^{3}}}+\pi^{3 / 2}+e^{x}$

$$
\text { Answer: } y^{\prime}=\frac{-3}{5 x^{8 / 5}}+e^{x}
$$

(b) $r=e^{\theta}\left(\frac{1}{\theta^{2}}+\theta^{-\pi / 2}\right)$

$$
\text { Answer: } r^{\prime}=e^{\theta}\left(\frac{-2}{\theta^{3}}-\frac{\pi}{2 \theta^{\pi / 2+1}}\right)+e^{\theta}\left(\frac{1}{\theta^{2}}+\frac{1}{\theta^{\pi / 2}}\right)
$$

2. Find the first and second derivatives of the following function

$$
y=\frac{1-e^{-x}}{x^{2}+1}
$$

Answer:

$$
\begin{aligned}
& y^{\prime}=\frac{-2 x e^{x}+2 x+x^{2}+1}{e^{x}\left(x^{2}+1\right)^{2}} \\
& y^{\prime \prime}=\frac{e^{x}\left(x^{2}+1\right)^{2}\left[-2 x e^{x}-2 e^{x}+2+2 x\right]-\left(-2 x e^{x}+2 x+x^{2}+1\right)\left(4 x e^{x}\left(x^{2}+1\right)+e^{x}\left(x^{2}+1\right)^{2}\right)}{e^{2 x}\left(x^{2}+1\right)^{4}}
\end{aligned}
$$

