Section 3.1(part), 3.3-3.4

Critical Numbers, Extreme Values, Increasing/Decreasing, Concave Up/Down MATH 1190

- Increasing/Decreasing
- Increasing: If $f^{\prime}(a)>0$, then f is increasing at $x=a$.

If $f^{\prime}(x)>0$ for all x on an interval, then f is increasing on that interval.

- Decreasing: If $f^{\prime}(a)<0$, then f is decreasing at $x=a$.

If $f^{\prime}(x)<0$ for all x on an interval, then f is decreasing on that interval.

- Critical Number: When $f^{\prime}(c)=0$ or $f^{\prime}(c)$ is undefined for some point $x=c$, then f is neither increasing nor decreasing and $x=c$ is called a critical number of f.
- A function ONLY changes from increasing to decreasing at CRITICAL numbers.
- Example: Let

$$
f(x)=x^{2}-1
$$

1. Find all critical numbers of f.

$$
f^{\prime}(x)=2 x
$$

Set $f^{\prime}(x)=0$ to find the critical numbers.

$$
2 x=0 \rightarrow x=0
$$

2. Find the intervals where f is increasing and where f is decreasing.

- Put the critical number on a number line.
- Pick test points in each interval.
- Determine if the derivative at each test point is positive or negative: f^{\prime} (test point $)>0$ then it is increasing on the entire interval. f^{\prime} (test point $)<0$ then it is decreasing on the entire interval.
- Write the interval where the function is increasing/decreasing in interval notation.

Decreasing: $(-\infty, 0)$
Increasing: ($0, \infty$)

- Relative Maximum/Minimum: At a critical number $x=c$, you may have a
- Relative maximum: At a relative maximum point, the y value of the point is greater than any of the y values immediately near it.

- Relative minimum: At a relative minimum point, the y value of the point is less than any of the y values immediately near it.

- First Derivative Test for Relative Maximum or Minimum: Let $x=c$ be a critical number of $f(x)$, then the point $(c, f(c))$ is a
* relative maximum if $f^{\prime}(x)>0$ (incr.) to the left of $x=c$ and $f^{\prime}(x)<0$ (decr) to the right of $x=c$.
* relative minimum if $f^{\prime}(x)<0$ (decr.) to the left of $x=c$ and $f^{\prime}(x)>0$ (incr) to the right of $x=c$.
- Back to the example: since f is decr. to the left and incr. to the right of $x=0$, then $(0, f(0))=$ $(0,-1)$ is a relative minimum of f.

- Concavity:

Slope of the tangent line increases, i.e., $\mathrm{f}^{\prime}(\mathrm{x})$ is increasing
This means 1 st deriv of $f^{\prime}(x)$, i.e., $f^{\prime \prime}(x)$ has to be positive

Slope of the tangent line decreases, i.e., $f^{\prime}(x)$ is decreasing This means 1 st deriv of $f^{\prime}(x)$, i.e., $f^{\prime \prime}(x)$ has to be negative

- Concave up: A function f is concave up at a point $x=a$ if $f^{\prime \prime}(a)>0$.
- Concave down: A function f is concave down at a point $x=a$ if $f^{\prime \prime}(a)<0$.
- Point of inflection: Any point at which the graph of a function changes concavity is called a point of inflection.

Possible points of inflection occur where

1. $f^{\prime \prime}(x)=0$
2. $f^{\prime \prime}(x)$ undefined.

- Example: Examine the function

$$
f(x)=\sqrt[3]{x}
$$

Let's go through all the questions.

- critical numbers: To find critical numbers, we want to see where $f^{\prime}(x)=0$ or $f^{\prime}(x)$ is undefined.

$$
f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}=\frac{1}{3 x^{2 / 3}}
$$

So, to figure out where a fraction is equal to 0 , you would look at where the numerator is equal to 0 . Here the numerator is 1 , but $1 \neq 0$, so there is no place where $f^{\prime}(x)=0$. To figure out where $f^{\prime}(x)$ is undefined, you look where the denominator is equal to 0 :

$$
\begin{aligned}
3 x^{2 / 3}=0 & \text { the denominator of } f^{\prime}(x) \text { set equal to } 0 \\
x^{2 / 3}=0 & \text { by dividing by } 3 \\
\left(x^{2 / 3}\right)^{3 / 2}=0^{3 / 2} & \text { by raising each side to the } 3 / 2 \\
x=0 & \text { by simplifying }
\end{aligned}
$$

So, the only critical number is $x=0$.

- intervals increasing and decreasing: Pick test points in each interval and look at the value of $f^{\prime}(x)$ in each interval.

- Relative Maximum or Minimum: Since the function is increasing both to the left and right of the critical number, there is NO relative maximum or minimum.
- Possible points of inflection: To find possible points of inflection, find where $f^{\prime \prime}(x)=0$ or $f^{\prime \prime}(x)$ is undefined.

$$
f^{\prime \prime}(x)=\frac{-2}{9} x^{-5 / 3}=\frac{-2}{9 x^{5 / 3}}
$$

There is no x which gives $f^{\prime \prime}(x)=0$, because the is no x which will make the numerator equal to $0 . x=0$ makes $f^{\prime \prime}(x)$ undefined. So, $x=0$ is the only possible inflection point. Do the same as you did with increasing and decreasing to figure out concavity, but with the second derivative!

Concave up: $(-\infty, 0)$
Concave down: ($0, \infty$)

- Sketch the graph In class.
- Second Derivative Test for Relative Maximum or Minimum: Let $x=c$ be a critical number of $f(x)$, then the point $(c, f(c))$ is a
- relative maximum if $f^{\prime \prime}(c)>0$ (concave down at $x=c$).
- relative minimum if $f^{\prime \prime}(c)<0$ (concave up at $x=c$).

The second derivative test FAILS if $f^{\prime \prime}(c)=0$ or $f^{\prime \prime}(c)$ is undefined.

- Group Work:

1. Find

- The critical numbers of f.
- The intervals where f is increasing and decreasing.
- Any relative maximum and minimum.
- Any possible inflection points.
- Intervals where f is concave up and concave down.
for each of the following:
(a) $f(x)=x^{3}-27 x$
(b) $f(x)=2 x^{3}-3 x^{2}-12 x-2$
(c) $f(x)=x^{4}+2 x^{3}$

2. Sketch a graph of the function with the following properties.
$-f^{\prime}(-3)=0$
$-f^{\prime \prime}(-3)<0$
$-f(-3)=8$
$-f^{\prime}(9)=0$
$-f^{\prime \prime}(9)>0$
$-f(9)=-6$
$-f^{\prime \prime}(2)=0$
$-f(2)=1$
