Section 2.8
 Implicit Differentiation
 MATH 1190

- Previously, we dealt with functions where y was an explicit function of x (y was was written explicitly in terms of x). For example,

1. $y=3 x^{2}-4$
2. $y=(4 x-5)^{1 / 2}$

- But, y may be an implicit function of x (y not written explicitly in terms of x). For example,

1. $3 x y-2=0$
2. $y^{3}-x^{2}+x y=3$

Note that even with implicit functions of x, y still depends on x and the change in y depends on how x changes.

- In number 1 above, we could rewrite the equation, so y was written as an explicit function of x :

$$
\begin{gathered}
3 x y-2=0 \\
3 x y=2 \\
y=\frac{2}{3 x}
\end{gathered}
$$

In this form, we can rewrite y as

$$
y=\frac{2}{3} x^{-1}
$$

Hence, the derivative would be

$$
y^{\prime}=-\frac{2}{3} x^{-2}=\frac{-2}{3 x^{2}}
$$

- In number 2 , we cannot rewrite y as an explicit function of x; however, we can still find $\frac{d y}{d x}$ using implicit differentiation.
- Implicit differentiation uses a special form of the chain rule. We assume y is a function of x (i.e. $\mathrm{y}=$ $\mathrm{f}(\mathrm{x})$), so

$$
\frac{d}{d x} y^{n}=\frac{d}{d x}(f(x))^{n}=n(f(x))^{n-1} \cdot f^{\prime}(x)=n y^{n-1} \frac{d y}{d x}
$$

More simply,

$$
\frac{d}{d x} y^{n}=n y^{n-1} \cdot \frac{d y}{d x}
$$

- Simple example:

$$
\frac{d}{d x} y^{3}=3 y^{2} \frac{d y}{d x}
$$

Notice, we are taking the derivative with respect to x, so we take the derivative like we normally do and get $3 y^{2}$, but since we have y and we are taking the derivative with respect to x, we have to multiply by $\frac{d y}{d x}$.

- Another simple example:

$$
\begin{align*}
\frac{d}{d x}(x y) & =x \frac{d}{d x} y+y \frac{d}{d x}(x) \\
& =x \cdot(1) \cdot \frac{d y}{d x}+y \cdot(\tag{1}
\end{align*}
$$

using the product rule
b / c in the first term, we need to take the derivative of y with respect to x. The normal derivative would be 1 but since it is the derivative of y with respect to x we have to multiply by the term $\frac{d y}{d x}$.
In the second term, we simply are taking the derivative of x with respect to x, so we simply get 1

$$
=x \frac{d y}{d x}+y \quad \text { simplifying }
$$

- Now, let's use implicit differentiation to differentiate the first equation above:

$$
3 x y-2=0
$$

We will break this into several steps:

- Step 1: Differentiate both sides (all terms) of the equation with respect to x :

$$
\begin{aligned}
& \frac{d}{d x}(3 x y)-\frac{d}{d x}(2)=\frac{d}{d x}(0) \\
& 3 x \frac{d}{d x}(y)+y \frac{d}{d x}(3 x)-0=0 \quad \text { using product rule } \\
& 3 x \frac{d y}{d x}+y(3)=0 \\
& 3 x \frac{d y}{d x}+3 y=0
\end{aligned}
$$

- Step 2: Collect all terms containing $\frac{d y}{d x}$ on one side and all other terms on the other side.

$$
3 x \frac{d y}{d x}=-3 y
$$

- Step 3: Factor out $\frac{d y}{d x}$ from all terms containing it. Note that this step is not necessary in this problem.
- Step 4: Solve for $\frac{d y}{d x}$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{-3 y}{3 x} \\
& \frac{d y}{d x}=\frac{-y}{x}
\end{aligned}
$$

Notice that this is equivalent to what we got above. Since we know y can be written explicitly (from above) as $y=\frac{2}{3 x}$, then

$$
\frac{d y}{d x}=\frac{-y}{x}=\frac{-\frac{2}{3 x}}{x}=\frac{-2}{3 x \cdot x}=\frac{-2}{3 x^{2}}
$$

This is the same as above.

- However, in example 2, we cannot write out y explicitly, but we may still need to understand how y changes as a function of x (remember, $\frac{d y}{d x}$ means the change of y with respect to x). Therefore, in example 2, there is no other way to find $\frac{d y}{d x}$ except by using implicit differentiation. Let's go through the same steps with this problem:

$$
y^{3}-x^{2}+x y=3
$$

- Step 1: Differentiate both sides (all terms) of the equation with respect to x :

$$
\begin{aligned}
& \frac{d}{d x}\left(y^{3}-x^{2}+x y\right)=\frac{d}{d x}(3) \\
& \frac{d}{d x}\left(y^{3}\right)-\frac{d}{d x}\left(x^{2}\right)+\underbrace{\frac{d}{d x}(x y)}_{\text {Product rule }}=\frac{d}{d x}(3) \\
& 3 y^{2} \frac{d y}{d x}-2 x+x \frac{d}{d x}(y)+y \frac{d}{d x}(x)=0 \\
& 3 y^{2} \frac{d y}{d x}-2 x+x \frac{d y}{d x}+y(1)=0 \\
& 3 y^{2} \frac{d y}{d x}-2 x+x \frac{d y}{d x}+y=0
\end{aligned}
$$

- Step 2: Collect all terms containing $\frac{d y}{d x}$ on one side and all other terms on the other side.

$$
3 y^{2} \frac{d y}{d x}+x \frac{d y}{d x}=2 x-y
$$

- Step 3: Factor out $\frac{d y}{d x}$ from all terms containing it.

$$
\frac{d y}{d x}\left(3 y^{2}+x\right)=2 x-y
$$

- Step 4: Solve for $\frac{d y}{d x}$

$$
\frac{d y}{d x}=\frac{2 x-y}{3 y^{2}+x}
$$

- Example: Obtain $\frac{d y}{d x}$ using implicit differentiation.

$$
x^{2}-y^{2}=2 x-5
$$

Go through the steps:

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{2}-y^{2}\right)=\frac{d}{d x}(2 x-5) \\
& \frac{d}{d x}\left(x^{2}\right)-\frac{d}{d x}\left(y^{2}\right)=\frac{d}{d x}(2 x)-\frac{d}{d x}(5) \\
& 2 x-2 y \frac{d y}{d x}=2-0 \quad \text { Notice that we have } \frac{d y}{d x} \text { in the second } \\
& \text { term, because we took the derivative of a } \\
& y \text { term w.r.t } x \\
& 2 x-2 y \frac{d y}{d x}=2 \\
& \text { simplifying }
\end{aligned}
$$

So, you get

$$
\begin{aligned}
& -2 y \frac{d y}{d x}=2-2 x \\
& \frac{d y}{d x}=\frac{2-2 x}{-2 y} \\
& \frac{d y}{d x}=\frac{-2(-1+x)}{-2 y} \\
& \frac{d y}{d x}=\frac{(-1+x)}{y} \\
& \frac{d y}{d x}=\frac{x-1}{y}
\end{aligned}
$$

- Example: Find the equation of the tangent line to the curve

$$
y-3 x y=22
$$

at the point $(4,-2)$.
In order to find the equation for the tangent line, we first need to find the slope of the tangent line. Remember,

$$
m_{\tan }=\frac{d y}{d x} \text { at } x=a
$$

So, we first need to find the derivative $\frac{d y}{d x}$. To do this, use implicit differentiation:

$$
\begin{aligned}
& \frac{d}{d x}(y-3 x y)=\frac{d}{d x}(22) \\
& \frac{d}{d x}(y)-\frac{d}{d x}(3 x y)=0 \\
& (1) \cdot \frac{d y}{d x}-\left(3 x \frac{d}{d x}(y)+y \frac{d}{d x}(3 x)\right)=0 \\
& \frac{d y}{d x}-\left(3 x \frac{d y}{d x}+y(3)\right)=0 \\
& \frac{d y}{d x}-3 x \frac{d y}{d x}-3 y=0 \\
& \frac{d y}{d x}-3 x \frac{d y}{d x}=3 y \\
& \frac{d y}{d x}(1-3 x)=3 y \\
& \frac{d y}{d x}=\frac{3 y}{1-3 x}
\end{aligned}
$$

So, we have $\frac{d y}{d x}=\frac{3 y}{1-3 x}$. To find the slope, we need to plug in the point given: $x=4, y=-2$ to get

$$
\frac{d y}{d x}=\frac{3(-2)}{1-3(4)}=\frac{6}{11}
$$

Then, the equation for the line is

$$
y-y_{1}=m_{\tan }\left(x-x_{1}\right)
$$

or

$$
y-(-2)=\frac{6}{11}(x-4)
$$

Simplifying, we get

$$
y=\frac{6}{11} x-\frac{2}{11}
$$

as the equation for the tangent line.

- Group Work:

- Problems:

1. Find $\frac{d y}{d x}$ using implicit differentiation.
(a) $y^{5}+x^{2} y^{3}=1+y e^{x^{2}}$
(b) $1+x=\sin \left(x y^{2}\right)$
(c) $y \sin \left(x^{2}\right)=x \sin \left(y^{2}\right)$
2. If $g(x)+x \sin (g(x))=x^{2}$, find $g^{\prime}(0)$.
3. Use implicit differentiation to find the equation for the tangent line to

$$
x^{2}+2 x y-y^{2}+x=2
$$

at the point $(1,2)$.

- Answers:

1. (a) $\frac{d y}{d x}=\frac{2 x y e^{x^{2}}-2 x y^{3}}{5 y^{4}+3 x^{2} y^{2}-e^{x^{2}}}$
(b) $\frac{d y}{d x}=\frac{1-y^{2} \cos \left(x y^{2}\right)}{2 x y \cos \left(x y^{2}\right)}$
(c) $\frac{d y}{d x}=\frac{\sin \left(y^{2}\right)-2 x y \cos \left(x^{2}\right)}{\sin \left(x^{2}\right)-2 x y \cos \left(y^{2}\right)}$
2. $g^{\prime}(0)=-\sin (g(0))$.
3. $y=\frac{7}{2} x-\frac{3}{2}$
