Section 3.7
 Indeterminant Forms and L'Hopital's Rule MATH 1190

- We are now going back to limits!!
- Recall

$$
\lim _{x \rightarrow 1} \frac{x^{2}-x}{x^{2}-1}=\lim _{x \rightarrow 1} \frac{x(x-1)}{(x-1)(x+1)}=\lim _{x \rightarrow 1} \frac{x}{(x+1)}=\frac{1}{1+1}=\frac{1}{2}
$$

Note that the original equation

$$
\frac{x^{2}-x}{x^{2}-1}
$$

has the indeterminant form $\frac{0}{0}$ as x goes to 1 , so we could factor to get rid of the "problem".

- Look at the following limit

$$
\lim _{x \rightarrow 1} \frac{\ln x}{x-1}
$$

It also has the indeterminant form $\frac{0}{0}$; however, there is no way to factor this to get rid of the "problem". This is where we would use L'Hopital's Rule.

- Another indeterminant form:

$$
\lim _{x \rightarrow \infty} \frac{x^{2}-1}{2 x^{2}+1}
$$

It has the indeterminant form $\frac{\infty}{\infty}$. Previously we solved this problem by dividing by the highest power in the denominator:

$$
\lim _{x \rightarrow \infty} \frac{x^{2}-1}{2 x^{2}+1}=\lim _{x \rightarrow \infty} \frac{\frac{x^{2}}{x^{2}}-\frac{1}{x^{2}}}{\frac{2 x^{2}}{x^{2}}+\frac{1}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{1-\frac{1}{x^{2}}}{2+\frac{1}{x^{2}}}=\frac{1-0}{2+0}=\frac{1}{2}
$$

- L'Hopital's Rule: Suppose f and g are differentiable and $g^{\prime}(x) \neq 0$ near a except possible at a. Suppose that $\frac{f}{g}$ has the indeterminant form of $\frac{0}{0}$ or $\frac{\infty}{\infty}$. Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

if the second limit exists.

- Going back to the first example:

$$
\lim _{x \rightarrow 1} \frac{x^{2}-x}{x^{2}-1}
$$

Since it has the indeterminant form $\frac{0}{0}$, we can use L'Hopital's rule:

$$
\lim _{x \rightarrow 1} \frac{x^{2}-x}{x^{2}-1}=\lim _{x \rightarrow 1} \frac{2 x-1}{2 x}=\frac{2(1)-1}{2(1)}=\frac{1}{2}
$$

which is the same as we found factoring.

- Example:

$$
\lim _{x \rightarrow 1} \frac{\ln x}{x-1}
$$

has the indeterminant form $\frac{0}{0}$ as well, so we can use L'Hopital's Rule:

$$
\lim _{x \rightarrow 1} \frac{\ln x}{x-1}=\lim _{x \rightarrow 1} \frac{\frac{1}{x}}{1}=\frac{\frac{1}{1}}{1}=1
$$

- Example:

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}}
$$

has the indeterminant form $\frac{\infty}{\infty}$, so we can use L'Hopital's Rule:

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}}=\lim _{x \rightarrow \infty} \frac{e^{x}}{2 x}
$$

However,

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{2 x}
$$

still has the indeterminant form $\frac{\infty}{\infty}$, so we can use L'Hopital's rule again:

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}}=\lim _{x \rightarrow \infty} \frac{e^{x}}{2 x}=\lim _{x \rightarrow \infty} \frac{e^{x}}{2}=\frac{\infty}{2}=\infty
$$

- Indeterminant form $0 \cdot \infty$

- Example:

$$
\lim _{x \rightarrow 0^{+}} x \ln x
$$

has the indeterminant form $0 \cdot \infty$.

- Technique: If $f \cdot g$ has the indeterminant form of $0 \cdot \infty$, rewrite

$$
f g=\frac{f}{\frac{1}{g}} \text { or } f g=\frac{g}{\frac{1}{f}}
$$

which will result in the indeterminant form of $\frac{0}{0}$ or $\frac{\infty}{\infty}$ which we can then use L'Hopital's rule on.

- Back to example:

Note, choosing which function stays in the numerator is important. For example

$$
\lim _{x \rightarrow 0^{+}} x \ln x=\lim _{x \rightarrow 0^{+}} \frac{x}{\frac{1}{\ln x}}
$$

has the indeterminant form of $\frac{0}{0}$ so we can use L'Hopital's rule. However, it is very complicated:

$$
\lim _{x \rightarrow 0^{+}} x \ln x=\lim _{x \rightarrow 0^{+}} \frac{x}{(\ln x)^{-1}}=\lim _{x \rightarrow 0^{+}} \frac{1}{-1(\ln x)^{-2} \frac{1}{x}}
$$

It gets VERY complicated, so we should choose to leave $\ln x$ in the numerator instead!

$$
\lim _{x \rightarrow 0^{+}} x \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\frac{1}{x}}
$$

which has the form $\frac{\infty}{\infty}$ which we can still use L'Hopital's rule on:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} x \ln x & =\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\frac{1}{x}} & & \\
& =\lim _{x \rightarrow 0^{+}} \frac{\ln x}{x^{-1}} & & \text { rewriting } \frac{1}{x} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-x^{-2}} & & \text { using L'Hopital's rule } \\
& =\lim _{x \rightarrow 0^{+}} \frac{1}{x} \div \frac{-1}{x^{2}} & & \text { rewriting } \\
& =\lim _{x \rightarrow 0^{+}} \frac{1}{x} \cdot \frac{-x^{2}}{1} & & \text { multiplying by reciprical } \\
& =\lim _{x \rightarrow 0^{+}}-x & & \text { simplifying } \\
& =0 & & \text { taking limit }
\end{aligned}
$$

- Indeterminant form $\infty-\infty$

- Example:

$$
\lim _{x \rightarrow \frac{\pi}{2}-}(\sec x-\tan x)
$$

has the indeterminant form $\infty-\infty$.

- Technique: In order to use L'Hopital's rule, we need a fraction which has the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$. Therefore, we need to either write with a common denominator, rationalize or factor out a common factor to get the problem in the appropriate form for using L'Hopital's rule.
- Back to example:

$$
\lim _{x \rightarrow \frac{\pi}{2}-}(\sec x-\tan x)
$$

We can write out the trigonometric functions in their fraction form and then get a common denominator:

$$
\begin{aligned}
\lim _{x \rightarrow \frac{\pi}{2}-}(\sec x-\tan x) & =\lim _{x \rightarrow \frac{\pi}{2}-}\left(\frac{1}{\cos x}-\frac{\sin x}{\cos x}\right) & & \text { rewriting trig functions } \\
& =\lim _{x \rightarrow \frac{\pi}{2}-}\left(\frac{1-\sin x}{\cos x}\right) & & \text { writing as one fraction }
\end{aligned}
$$

Now,

$$
\lim _{x \rightarrow \frac{\pi}{2}-}\left(\frac{1-\sin x}{\cos x}\right)
$$

has the indeterminant form $\frac{0}{0}$ so we can use L'Hopital's rule.

$$
\begin{aligned}
\lim _{x \rightarrow \frac{\pi}{2}-}(\sec x-\tan x) & =\lim _{x \rightarrow \frac{\pi}{2}-}\left(\frac{1-\sin x}{\cos x}\right) & & \text { from above } \\
& =\lim _{x \rightarrow \frac{\pi}{2}-} \frac{-\cos x}{-\sin x} & & \text { using L'Hopital's rule } \\
& =\frac{0}{-1}=0 & & \text { evaluating }
\end{aligned}
$$

- Indeterminant Powers $0^{0}, \infty^{0}, 1^{\infty}$
- Example:

$$
\lim _{x \rightarrow 0}(1+\sin (4 x))^{\cot x}
$$

has the indeterminant power 1^{∞}.

- Technique: If we want to find

$$
\lim _{x \rightarrow a} y
$$

and $y=(f(x))^{g(x)}$ has an indeterminant power of $0^{0}, \infty^{0}$, or 1^{∞}, then we are first going to find

$$
\lim _{x \rightarrow a} \ln y
$$

where $\ln y=\ln (f(x))^{g(x)}=g(x) \cdot \ln f(x)$.
If

$$
\lim _{x \rightarrow a} \ln y=c
$$

then

$$
\lim _{x \rightarrow a} y=e^{c}
$$

- Back to example:

$$
\lim _{x \rightarrow 0}(1+\sin (4 x))^{\cot x}
$$

So

$$
y=(1+\sin (4 x))^{\cot x}
$$

Then

$$
\ln y=\ln \left((1+\sin (4 x))^{\cot x}\right)=\cot x \ln (1+\sin (4 x))
$$

Looking at $\lim _{x \rightarrow a} \ln y$ we have

$$
\lim _{x \rightarrow 0} \cot x \ln (1+\sin (4 x))
$$

which has the indeterminant form $\infty \cdot 0$. We need to rewrite $f g=\frac{f}{\frac{1}{g}}$ or $f g=\frac{g}{\frac{1}{f}}$. Rule of thumb: normally keep the \ln in the numerator.

$$
\begin{array}{rlrl}
\lim _{x \rightarrow 0} \cot x \ln (1+\sin (4 x)) & =\lim _{x \rightarrow 0} \frac{\ln (1+\sin (4 x))}{\frac{1}{\cot x}} & & \text { rewriting } f g=\frac{g}{\frac{1}{f}} \\
& =\lim _{x \rightarrow 0} \frac{\frac{\ln (1+\sin (4 x))}{\tan x}}{} & \text { rewriting } \frac{1}{\cot x}=\tan x \\
& =\lim _{x \rightarrow 0} \frac{\frac{4 \cos (4 x)}{(1+\sin (4 x))}}{\sec ^{2} x} & & \text { using L'Hopital's rule } \\
& =\frac{\frac{1}{1+0}}{1}=4 & & \text { evaluating }
\end{array}
$$

Thus,

$$
\lim _{x \rightarrow 0}(1+\sin (4 x))^{\cot x}=e^{4}
$$

- Group Work:

- Problems: Find the following limits

1. $\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt[3]{x}}$
2. $\lim _{x \rightarrow 0} \frac{\tan x-x}{x^{3}}$
3. $\lim _{x \rightarrow \pi^{-}} \frac{\sin x}{1-\cos x}$
4. $\lim _{x \rightarrow 0} x^{x}$
5. $\lim _{x \rightarrow 0^{+}} \ln x-\ln (\sin x)$
6. $\lim _{x \rightarrow \infty} x^{\frac{1}{\ln x}}$

- Answers:

1. 0
2. $\frac{1}{3}$
3. 0
4. 1
5. 0
6. e
