Sections 1.4 and 1.6

Limits
 MATH 1190

- Consider the function

$$
f(x)=\frac{x^{2}-4}{x-2}
$$

It is undefined at $x=2$, because the denominator equals 0 at $x=2$.

- Review of Domains: The domain of a function is normally all real numbers except:

1. Those values of x which make the denominator equal to 0 (can't have 0 in the denominator).
2. Those values of x which cause a negative under and even indexed radical.
3. Those values of x which cause a 0 or negative numbers inside of a logarithm.

- Back to problem:

$$
f(x)=\frac{x^{2}-4}{x-2}
$$

Limits have determine the behavior of $f(x)$ as x approaches some number. In other words, in terms of this problem, what happens to $f(x)$ (the y-values) as x gets close to 2 (but not equal to 2). What happens as x approaches 2? Graph of

$$
f(x)=\frac{x^{2}-4}{x-2}
$$

- As x gets closer and closer to 2 from the left, what do the y values approach? 4
- As x gets closer and closer to 2 from the right, what do the y values approach? 4
- As x gets closer and closer to 2 , what do the y values approach? 4

You can also examine a Table of Values, we plug in x values that are approaching 2 into our function $f(x)$, and see what happens to the y values.

- As x approaches 2 from the left.

x	$f(x)$
1	3
1.9	3.9
1.99	3.99
1.999	3.999

- As x approaches 2 from the right.

x	$f(x)$
3	5
2.1	4.1
2.01	4.01
2.001	4.001

Notice that in both tables, as x gets closer to 2 , the y values approach 4 . We say, "the limit of $f(x)=\frac{x^{2}-4}{x-2}$, as x approaches 2 , is 4 ."

- Mathematical notation:

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=4
$$

- Another example: Use a table of values to find

$$
\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}
$$

- As x approaches 1 from the left.

x	$f(x)$
0	1
0.9	1.9
0.99	1.99
0.999	1.999
x	$f(x)$
2	3
1.1	2.1
1.01	2.01
1.001	2.001

Graphically:

We say

$$
\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=2
$$

- One-handed limits: Consider the following function:

- Left-hand limit: When you see the minus as the exponent of the number, it means what is the limit of $f(x)$ as x approaches the number from the left. In the example above, we can examine $f(x)$ as x approaches 1 from the left:

$$
\lim _{x \rightarrow 1^{-}} f(x)=2
$$

- Right-hand limit: When you see the plus as the exponent of the number, it means what is the limit of $f(x)$ as x approaches the number from the right. In the example above, we can examin $f(x)$ as x approaches 1 from the right:

$$
\lim _{x \rightarrow 1^{+}} f(x)=1
$$

- General Definition of Limit For any function f

$$
\lim _{x \rightarrow c} f(x)=L
$$

means that as x gets closer and closer to c, but not equal to c, from both the left and the right, f gets closer and closer to L.

Note: If

$$
\lim _{x \rightarrow c^{-}} f(x) \neq \lim _{x \rightarrow c^{+}} f(x),
$$

then we say the limit does not exist!
Note: $f(c)$ doe NOT need to be defined!

- See plot from class.

- Group Work - worksheet

- Limit Theorems:

1. $\lim _{x \rightarrow c} k=k$ (The limit of a constant is that constant)

- Example: $\lim _{x \rightarrow 100} \frac{1}{5}=\frac{1}{5}$

2. $\lim _{x \rightarrow c} x=c$ (The limit of x as x approaches c is c)

- Example: $\lim _{x \rightarrow 45} x=45$

3. Constant Multiple Rule $\lim _{x \rightarrow c} k \cdot f(x)=k \cdot \lim _{x \rightarrow c} f(x)$ (The constant can be taken out of the limit since it doesn't depend on x)

- Example: $\lim _{x \rightarrow 2} 4 x=4 \lim _{x \rightarrow 2} x=4(2)=8$

4. Sum Rule $\lim _{x \rightarrow c}[f(x) \pm g(x)]=\lim _{x \rightarrow c} f(x) \pm \lim _{x \rightarrow c} g(x)$

- Example: $\lim _{x \rightarrow 5}(x+4)=\lim _{x \rightarrow 5} x+\lim _{x \rightarrow 5} 4=5+4=9$

5. Product Rule $\lim _{x \rightarrow c}[f(x) \cdot g(x)]=\lim _{x \rightarrow c} f(x) \cdot \lim _{x \rightarrow c} g(x)$

- Example: $\lim _{x \rightarrow 5} x(x+4)=\left(\lim _{x \rightarrow 5} x\right) \cdot\left(\lim _{x \rightarrow 5}(x+4)\right)=5(9)=45$

6. Quotient Rule $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)}$ provided $\lim _{x \rightarrow c} g(x) \neq 0$.

- Example: $\lim _{x \rightarrow 5} \frac{x+4}{x}=\frac{\lim _{x \rightarrow 2}(x+4)}{\lim _{x \rightarrow 5} x}=\frac{9}{5}$

7. Power Rule $\lim _{x \rightarrow c}[f(x)]^{n}=\left[\lim _{x \rightarrow c} f(x)\right]^{n}$. (You can bring the limit inside)

- Example: $\lim _{x \rightarrow 2} x^{3}=\left[\lim _{x \rightarrow 2} x\right]^{3}=2^{3}=8$

8. Simplified Power Rule $\lim _{x \rightarrow c} x^{n}=c^{n}$
9. Root Rule $\lim _{x \rightarrow c} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow c} f(x)}$. (You can bring the limit inside)

- Example: $\lim _{x \rightarrow 18} \sqrt{x-2}=\sqrt{\lim _{x \rightarrow 18}(x-2)}=\sqrt{18-2}=4$

10. Simplified Root Rule $\lim _{x \rightarrow c} \sqrt[n]{x}=\sqrt[n]{c}$.

- Example: $\lim _{x \rightarrow 4} \sqrt{x}=\sqrt{4}=2$
- All of the Limit Theorems lead us to the Substitution Property:

If f is a continuous function and c is in the domain of f, then

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

- Example:

$$
\lim _{x \rightarrow 2} \frac{x^{2}+3}{5-x}=\frac{2^{2}+3}{5-2}=\frac{7}{3}
$$

- Example:

$$
\lim _{x \rightarrow \frac{\pi}{2}}(x+\sin x)=\frac{\pi}{2}+\sin \left(\frac{\pi}{2}\right)=\frac{\pi}{2}+1
$$

- Indeterminant Form: $\frac{0}{0}$ Let's look back at the original example

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}
$$

Notice that we cannot use the Substitution Property, because 2 is NOT in the domain of our function, because if you plug in 2 to the denominator, you get 0 . However, if you plug 2 into the numerator, you also get 0 . This is the indeterminant form $\frac{0}{0}$. In this case, there is a way to "get rid of the problem".

- In our example, we can factor the numerator and cancel out the "problem".

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{x-2}=\lim _{x \rightarrow 2}(x+2)=4
$$

- Example:

$$
\lim _{x \rightarrow 3} \frac{x-3}{x^{2}-x-6}=\lim _{x \rightarrow 3} \frac{x-3}{(x-3)(x+2)}=\frac{1}{5}
$$

- Example:

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h} & =\lim _{h \rightarrow 0} \frac{(3+h)(3+h)-9}{h} \\
& =\lim _{h \rightarrow 0} \frac{9+6 h+h^{2}-9}{h} \\
& =\lim _{h \rightarrow 0} \frac{6 h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(6+h)}{h} \\
& =\lim _{h \rightarrow 0}(6+h) \\
& =6+0 \\
& =6
\end{aligned}
$$

- Example:

$$
\lim _{t \rightarrow 0} \frac{\sqrt{t^{2}+9}-3}{t^{2}}
$$

Notice, this still has the form $\frac{0}{0}$, but we can't factor. In this case we need to rationalize:

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{\sqrt{t^{2}+9}-3}{t^{2}} & =\lim _{t \rightarrow 0} \frac{\sqrt{t^{2}+9}-3}{t^{2}} \cdot \frac{\sqrt{t^{2}+9}+3}{\sqrt{t^{2}+9}+3} \\
& =\lim _{t \rightarrow 0} \frac{t^{2}+9-9}{t^{2}\left(\sqrt{t^{2}+9}+3\right)} \\
& =\lim _{t \rightarrow 0} \frac{t^{2}}{t^{2}\left(\sqrt{t^{2}+9}+3\right)} \\
& =\lim _{t \rightarrow 0} \frac{1}{\sqrt{t^{2}+9}+3} \\
& =\frac{1}{\sqrt{0^{2}+9}+3} \\
& =\frac{1}{6}
\end{aligned}
$$

- Group Work - worksheet

