Section 3.1(part)
Extreme Values of Functions
MATH 1190

- Relative Maximum or Minimum: Recall that relative maximum and minimum points are maximum or minimum relative to the points close to it. They occur at critical numbers $x=c$ where $f^{\prime}(c)=0$ or $f^{\prime}(c)$ is undefined. If $f^{\prime \prime}(x)<0$ (concave down), then $x=c$ is a relative maximum. If $f^{\prime \prime}(x)>0$ (concave up), then $x=c$ is a relative minimum.
- Absolute Maximum or Minimum: The absolute maximum or minimum is the largest or smallest value of the given interval or domain.
- For a continuous function of a closed interval $[a, b]$, the absolute maximum or minimum occur either where at one of these two points:

1. at the relative maximum or minimum point
2. at the endpoint of the interval

- To find the absolute extrema of the function $f(x)$ on the interval $[a, b]$:

1. Find all critical numbers of $f(x)$.
2. Evaluate $f(c)$ for all critical numbers inside the interval $[a, b]$. Evaluate $f(a)$ and $f(b)$.
3. Find the largest value from number 2 - this gives the absolute maximum.

Find the smallest value from number 2 - this gives the absolute minimum.

- Example: Find the absolute extrema for the function $f(x)=2 x^{3}+3 x^{2}-12 x+1$ on the interval $[-3,0]$

First find the critical numbers: $f^{\prime}(x)=6 x^{2}+6 x-12$

$$
\begin{aligned}
6 x^{2}+6 x-12 & =0 \\
6\left(x^{2}+x-2\right) & =0 \\
6(x+2)(x-1) & =0
\end{aligned}
$$

So, the critical numbers are $x=-2$ and $x=1 . x=1$ is not in the interval, so disregard.
Now evaluate $f(-2)$ (original function at the critical number) and $f(-3), f(0)$ (original function evaluated at the endpoints of the interval).

$$
\begin{aligned}
f(-2) & =21 \leftarrow \text { abs. max at }(-2,21) \\
f(-3) & =10 \\
f(0) & =1 \leftarrow \text { abs. max at }(0,1)
\end{aligned}
$$

- Group Work

- Problems: Find the absolute extrema of the following functions on the given interval.

1. $f(x)=30 x-x^{2} ;(-\infty, \infty)$
2. $f(x)=x^{2} e^{x} ;[-3,1]$
3. $f(x)=\frac{x}{x^{2}+4} ;[0,3)$

- Answers:

1. absolute maximum at $(15,225)$
2. absolute minimum at $(0,0)$ absolute maximum at $(1, e)$
3. absolute minimum at $(0,0)$ absolute maximum at $\left(2, \frac{1}{4}\right)$
