Section 3.2
 Mean Value Theorem
 MATH 1190

- Rolle's Theorem: Suppose $y=f(x)$ is continuous at every point $[a, b]$ and differentiable at every point (a, b). If $f(a)=f(b)$, then there is at least one number c in (a, b) at which $f^{\prime}(c)=0$. (see the pictures below.)

- Mean Value Theorem: Suppose $y=f(x)$ is continuous on $[a, b]$ and differentiable on (a, b). Then there exists at least one point c in (a, b) at which

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Proof: Let $g(x)$ be the line passing through $(a, f(a))$ and $(b, f(b))$. Then the line passing through the points can be found using the point slope for where

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{f(b)-f(a)}{b-a}
$$

Thus, using $y-y_{1}=m\left(x-x_{1}\right)$, we have

$$
\begin{aligned}
& y-f(a)=\frac{f(b)-f(a)}{b-a}(x-a) \\
& y=f(a)+\frac{f(b)-f(a)}{b-a}(x-a)
\end{aligned}
$$

So,

$$
g(x)=f(a)+\frac{f(b)-f(a)}{b-a}(x-a)
$$

Let $h(x)$ represent the distance between $f(x)$ and $g(x)$ at any point x. In other words,

$$
h(x)=f(x)-g(x)
$$

Using the formula for $g(x)$, we get

$$
h(x)=f(x)-\left(f(a)+\frac{f(b)-f(a)}{b-a}(x-a)\right)
$$

Notice that

$$
h(a)=f(a)-\left(f(a)+\frac{f(b)-f(a)}{b-a}(a-a)\right)=0
$$

and

$$
h(b)=f(b)-\left(f(a)+\frac{f(b)-f(a)}{b-a}(b-a)\right)=0
$$

Using Rolle's theorem, since $h(a)=h(b)$, there exists at least one point c in (a, b) such that $h^{\prime}(c)=0$.
Differentiating $h(x)$, we have

$$
\begin{aligned}
h^{\prime}(x) & =f r a c d d x\left(f(x)-\left(f(a)+\frac{f(b)-f(a)}{b-a}(x-a)\right)\right) \\
& =f^{\prime}(x)-\frac{f(b)-f(a)}{b-a}
\end{aligned}
$$

So,

$$
h^{\prime}(c)=f^{\prime}(c)-\frac{f(b)-f(a)}{b-a}
$$

Thus, since $h^{\prime}(c)=0$, we have

$$
0=f^{\prime}(c)-\frac{f(b)-f(a)}{b-a}
$$

or

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

This proves the Mean Value Theorem.

- Consequences of Mean Value Theorem

1. If $f^{\prime}(x)=0$ at each point x of an open interval (a, b), then $f(x)=C$ for all x in (a, b), where C is a constant.

Proof: Let x_{1} and x_{2} be any two points in the interval (a, b). I'll show that regardless of what x_{1} and x_{2} are $f\left(x_{1}\right)=f\left(x_{2}\right)$ for any two points x_{1} and x_{2}. This will mean that $f(x)$ is constant. f satisfies the Mean Value Theorem which means that there is a point c in $\left[x_{1}, x_{2}\right]$ such that

$$
f^{\prime}(c)=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

But, since $f^{\prime}(x)=0$ for any x, then $f^{\prime}(c)=0$. So,

$$
0=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

which means that $f\left(x_{2}\right)-f\left(x_{1}\right)=0$ or $f\left(x_{2}\right)=f\left(x_{1}\right)$. Thus for any two points x_{1} and x_{2} in (a, b). So, $f(x)=C$ where C is a constant.
2. If $f^{\prime}(x)=g^{\prime}(x)$ at each point x in an open interval (a, b), then there exists a constant C such that $f(x)=g(x)+C$ for all x in (a, b). In other words, $f-g$ is a constant on (a, b).

Proof: Let $h=f-g$. Then $h^{\prime}(x)=f^{\prime}(x)-g^{\prime}(x)=0$ since $f^{\prime}(x)=g^{\prime}(x)$. From the first consequence, we have $h(x)=C$ where C is a constant. So, $f(x)-g(x)=C$ or $f(x)=g(x)+C$.

