Section 3.6
 Optimization
 MATH 1190

1. Of all the numbers whose sum is 70 , find the two that have the maximum product.

- You want to find two numbers, say x and y.
- Need maximum product, so we need to maximize $Q=x y$.
- You have a function with 2 variables. From the previous sections, you know how to find the maximum and minimum of a function with one variable (find the critical numbers and determine whether it is a maximum or minimum). Therefore, you need an additional equation to relate the two numbers x and y. It is given that the sum of the numbers needs to be 70 , i.e.

$$
x+y=70
$$

- Solve the above equation for one of the variables and substitute into $Q=x y$. So, solving for y, we have

$$
y=70-x
$$

Thus,

$$
Q=x(70-x)=70 x-x^{2} .
$$

- To find the maximum of Q, find the critical numbers.

$$
Q^{\prime}(x)=70-2 x
$$

Setting $Q^{\prime}(x)=0$, we have $x=35$ is the only critical number.

- Need to make sure the critical number gives a maximum. Use the second derivative test:

$$
Q^{\prime \prime}(x)=-2
$$

so

$$
Q^{\prime \prime}(35)=-2<0(\text { concave down - so maximum })
$$

- Look back at the question and make sure what it is asking for: two numbers whose sum is 70 and has a maximum product. We have $x=35$. To find y, plug $x=35$ into the equation for y : $y=70-x=70-35=35$. So,the answer is $x=35$ and $y=35$.

2. Melissa has 400 feet of fencing with which to enclose two adjacent lots. Determine the dimensions x and y that maximize the total area. What is the maximum area.

- Want to maximize $A=x y$
- Need an additional equation. You have 400 feet of fencing, so

$$
2 x+3 y=400
$$

Solving for y, you get

$$
y=\frac{400}{3}-\frac{2}{3} x
$$

- Substitute the equation for y into $A=x y$ to get

$$
A=x\left(\frac{400}{3}-\frac{2}{3} x\right)=\frac{400}{3} x-\frac{2}{3} x^{2}
$$

- To find the maximum, we need to first find the critical numbers.

$$
A^{\prime}=\frac{400}{3}-\frac{4}{3} x
$$

Setting this equal to 0 , we get $x=100$.

- To make sure $x=100$ gives a maximum, we need to use the second derivative test.

$$
A^{\prime \prime}=-\frac{4}{3}
$$

so

$$
A^{\prime \prime}(100)=-\frac{4}{3}<0(\text { concave down }- \text { so maximum })
$$

- Now look to see what is asked for - the dimensions x and y and the maximum area. $x=100$, so $y=\frac{400}{3}-\frac{2}{3}(100)=\frac{200}{3}$. Maximum area is $A=100\left(\frac{200}{3}\right)=\frac{20000}{3}$ square feet.

3. From a thin piece of cadboard 20 in . by 20 in ., square corners are cut out so that the sides can be folded up to make a box. What dimensions yield a box of maximum volume? What is the maximum volume?

- You are looking for the maximum volume, so you want to find

$$
V=l w h
$$

Looking at the picture, you can see the length and width are both $20-2 x$ and width is x, so

$$
V=(20-2 x)^{2} x
$$

- Finding the critical numbers, you have

$$
V^{\prime}=2(20-2 x)(-2) x+(20-2 x)^{2}=(20-2 x)(-4 x+(20-2 x))=(20-2 x)(20-6 x)
$$

So, the critical numbers are $x=10$ and $x=\frac{10}{3}$.
You disregard $x=10$, because if $x=10$, then the length and width are 0 which is impossible. So, the only critical number possible is $x=\frac{10}{3}$.

- To check that $x=\frac{10}{3}$ gives a maximum, use the second derivative test.

$$
V^{\prime \prime}=-6(20-2 x)-2(20-6 x)
$$

so

$$
V^{\prime \prime}\left(\frac{10}{3}\right)<0 \text { (concave down - so maximum) }
$$

- The problem asks for the dimensions of the box. The height is x, so the height is $\frac{10}{3} \mathrm{in}$. The width is $20-2 x=\frac{40}{3} \mathrm{in}$. The length is the same, $\frac{40}{3} \mathrm{in}$. The problem also asks for the volume, which is $l^{*}{ }^{*}{ }^{*} \mathrm{~h}$ or

$$
V=\left(\frac{10}{3}\right)\left(\frac{40}{3}\right)\left(\frac{40}{3}\right)=592.6 \text { cubic inches }
$$

