Overview Sections 1.3 and 2.1 Rates of Change and Tangent Lines MATH 1190

- Rate of change describes how fast or slow something changes. For example, how fast or slow a car moves. Average velocity is described as

$$
\text { average velocity }=\frac{\text { change in position }}{\text { time elapsed or change in time }}
$$

This is like the slope of a line. If $s(t)$ represents the distance traveled, then average velocity is given by

$$
\text { average velocity }=\frac{s\left(t_{2}\right)-s\left(t_{1}\right)}{t_{2}-t_{1}}\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)
$$

- Average rate of change is described as the slope of a secant line (a line joining two points on a graph); see graph below.

- So, average rate of change describes how fast or slow something moves across a period of time. For instance, if the average velocity from a 30 minute trip is $45 \mathrm{~m} . \mathrm{p} . \mathrm{h}$., that does not necessarily mean that the car was always going $45 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. It may have gone slower or faster at different points.
- Instantaneous rate of change describes how fast or slow something is changing at a specific instance in time. This can be found by taking the limit of the average rate of change as the time elapsed decreases to 0 , i.e.

$$
\text { Instantaneous rate of change }=\lim _{t_{2} \rightarrow t_{1}} \frac{s\left(t_{2}\right)-s\left(t_{1}\right)}{t_{2}-t_{1}}
$$

or if we let $t_{2}-t_{1}=h$, then $t_{2}=t_{1}+h$ and we can write

$$
\text { Instantaneous rate of change }=\lim _{h \rightarrow 0} \frac{s\left(t_{1}+h\right)-s\left(t_{1}\right)}{h}
$$

- The instantaneous rate of change is described as the slope of a tangent line to a curve. A tangent line to a curve at a point P matches the "steepness" of the curve at the point and touches the curve at only point P .
- So, the instantaneous rate of change and the slope of the tangent coincide. The slope of the tangent line for a curve $y=f(x)$ at the point $\left(x_{1}, y_{1}\right)$ is given by

$$
m_{\text {tan }}=\lim _{h \rightarrow 0} \frac{\left(f\left(x_{1}+h\right)-f\left(x_{1}\right)\right.}{h}
$$

- Example: Find the equation for the tangent line to the curve $y=x^{2}+1$ at the point $(1,2)$.

$$
\begin{aligned}
m_{\text {tan }} & =\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left((1+h)^{2}+1\right)-\left(1^{2}+1\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(1+2 h+h^{2}+1\right)-2}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h+h^{2}+2-2}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2+h)}{h} \\
& =\lim _{h \rightarrow 0} 2+h \\
& =2+0 \\
& =2
\end{aligned}
$$

