• **Functions in College Algebra:** Recall in college algebra, functions are denoted by

\[f(x) = y \]

where \(f : \text{dom}(f) \rightarrow \text{range}(f) \).

• **Mappings:** In Linear Algebra, we have a similar notion, called a *map*:

\[T : V \rightarrow W \]

where \(V \) is the domain of \(T \) and \(W \) is the codomain of \(T \) where both \(V \) and \(W \) are vector spaces.

• **Terminology:** If

\[T(v) = w \]

then

- \(w \) is called the *image* of \(v \) under the mapping \(T \)
- \(v \) is called the *preimage* of \(w \)
- the set of all images of vectors in \(V \) is called the *range of \(T*)

• **Example:** Let

\[T([v_1, v_2]) = [2v_2 - v_1, v_1, v_2] \]

then \(T : \mathbb{R}^2 \rightarrow \mathbb{R}^3 \).

- Find the image of \(v = [0, 6] \).

\[T([0, 6]) = [2(6) - 0, 0, 6] = [12, 0, 6] \]

- Find the preimage of \(w = [3, 1, 2] \).

\[[3, 1, 2] = [2v_2 - v_1, v_1, v_2] \]

which means

\[
\begin{align*}
2v_2 - v_1 &= 3 \\
v_1 &= 1 \\
v_2 &= 2
\end{align*}
\]

So, \(v = [1, 2] \).
Example: Let

\[T([v_1, v_2, v_3]) = [2v_1 + v_2, v_1 - v_2] \]

Then \(T : \mathbb{R}^3 \rightarrow \mathbb{R}^2 \).

1. Find the image of \(v = [2, 1, 4] \):

 \[T([2, 1, 4]) = [2(2) + 1, 2 - 1] = [5, 1] \]

2. Find the preimage of \(w = [-1, 2] \)

 \[[-1, 2] = [2v_1 + v_2, v_1 - v_2] \]

 This leads to

 \[
 \begin{align*}
 2v_1 + v_2 &= -1 \\
 v_1 - v_2 &= 2
 \end{align*}
 \]

Recall that you are looking for \(v = [v_1, v_2, v_3] \). So, there are really 3 unknowns in the system:

\[
\begin{align*}
2v_1 + v_2 + 0v_3 &= -1 \\
v_1 - v_2 + 0v_3 &= 2
\end{align*}
\]

This leads to the solution

\[v = \left[\frac{1}{3}, -\frac{5}{3}, k \right] \]

where \(k \) is an real number.

Definition: Let \(V \) and \(W \) be vector spaces. The function \(T : V \rightarrow W \) is called a **linear transformation** of \(V \) into \(W \) if the following 2 properties are true for all \(u \) and \(v \) in \(V \) and for any scalar \(c \):

1. \(T(u + v) = T(u) + T(v) \)
2. \(T(cu) = cT(u) \)

Example: Determine whether \(T : \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) defined by

\[T([x, y, z]) = [x + y, x - y, z] \]

is a linear transformation.

1. Let \(u = [x_1, y_1, z_1] \) and \(v = [x_2, y_2, z_2] \). Then we want to prove \(T(u + v) = T(u) + T(v) \).

 \[
 \begin{align*}
 T(u + v) &= T([x_1, y_1, z_1] + [x_2, y_2, z_2]) \\
 &= T([x_1 + x_2, y_1 + y_2, z_1 + z_2]) \\
 &= [x_1 + x_2 + y_1 + y_2, x_1 + x_2 - (y_1 + y_2), z_1 + z_2]
 \end{align*}
 \]

 and

\[
\begin{align*}
T(u) + T(v) &= T([x_1, y_1, z_1]) + T([x_2, y_2, z_2]) \\
&= [x_1 + y_1, x_1 - y_1, z_1] + [x_2 + y_2, x_2 - y_2, z_2] \\
&= [x_1 + y_1 + x_2 + y_2, x_1 - y_1 + x_2 - y_2, z_1 + z_2] \\
&= [x_1 + x_2 + y_1 + y_2, x_1 + x_2 - (y_1 + y_2), z_1 + z_2]
\end{align*}
\]

Therefore, \(T(u + v) = T(u) + T(v) \).

2. We want to prove \(T(cu) = cT(u) \).

 \[
 \begin{align*}
 T(cu) &= T(c[x_1, y_1, z_1]) \\
 &= T([cx_1, cy_1, cz_1]) \\
 &= [cx_1 + cy_1, cx_1 - cy_1, cz_1]
 \end{align*}
 \]

 and

\[
\begin{align*}
cT(u) &= cT([x_1, y_1, z_1]) \\
&= c[x_1 + y_1, x_1 - y_1, z_1] \\
&= [c(x_1 + y_1), c(x_1 - y_1), cz_1] \\
&= [cx_1 + cy_1, cx_1 - cy_1, cz_1]
\end{align*}
\]

So, \(T(cu) = cT(u) \).
Therefore, T is a linear transformation.

- Example: Determine whether $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ defined by

 $$T([x, y]) = [x^2, y]$$

 is a linear transformation.

 1. Let $u = [x_1, y_1]$ and $v = [x_2, y_2]$. Then we want to prove $T(u + v) = T(u) + T(v)$.

 $$T(u + v) = T([x_1, y_1] + [x_2, y_2]) = T([x_1 + x_2, y_1 + y_2]) = ([x_1 + x_2]^2, y_1 + y_2) = [x_1^2 + 2x_1x_2 + x_2^2, y_1 + y_2]$$

 and

 $$T(u) + T(v) = T([x_1, y_1]) + T([x_2, y_2]) = [x_1^2, y_1] + [x_2^2, y_2] = [x_1^2 + x_2^2, y_1 + y_2]$$

 Since, $T(u + v) \neq T(u) + T(v)$, T is not a linear transformation. There is no need to test the second criteria. However, you could have proved the same thing using the second criteria:

 2. We would want to prove $T(cu) = cT(u)$.

 $$T(cu) = T(c[x_1, y_1]) = T([cx_1, cy_1]) = ([cx_1]^2, cy_1) = [c^2x_1^2, cy_1]$$

 and

 $$cT(u) = cT([x_1, y_1]) = c[x_1^2, y_1] = [c^2x_1^2, cy_1]$$

 So, $T(cu) \neq cT(u)$ either. Thus, again, we would have showed, T was not a linear transformation.

- Two Simple Linear Transformations:

 - Zero Transformation: $T: V \rightarrow W$ such that $T(v) = 0$ for all v in V

 - Identity Transformation: $T: V \rightarrow V$ such that $T(v) = v$ for all v in V

- Theorem: Let T be a linear transformation from V into W, where u and v are in V. Then

 1. $T(0) = 0$
 2. $T(-v) = -T(v)$
 3. $T(u - v) = T(u) - T(v)$
 4. If

 $$v = c_1v_1 + c_2v_2 + ... + c_nv_n$$

 then

 $$T(v) = c_1T(v_1) + c_2T(v_2) + ... + c_nT(v_n)$$

- Example: Let $T: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ such that

 $$T([1, 0, 0]) = [2, 4, -1] \quad T([0, 1, 0]) = [1, 3, -2] \quad T([0, 0, 1]) = [0, -2, 2]$$

 Find $T([-2, 4, -1])$. Since

 $$[-2, 4, -1] = -2[1, 0, 0] + 4[0, 1, 0] - 1[0, 0, 1]$$

 we can say

 $$T([-2, 4, -1]) = -2T([1, 0, 0]) + 4T([0, 1, 0]) - 1T([0, 0, 1]) = -2[2, 4, -1] + 4[1, 3, -2] - [0, -2, 2] = [0, 6, -8]$$
• **Theorem:** Let A be a mn matrix. The function T defined by

$$T(v) = Av$$

is a linear transformation from $\mathbb{R}^n \to \mathbb{R}^m$.

• **Examples:**
 - If $T(v) = Av$ where
 $$A = \begin{bmatrix} 1 & 2 \\ -2 & 4 \\ -2 & 2 \end{bmatrix}$$
 then $T : \mathbb{R}^2 \to \mathbb{R}^3$.
 - If $T(v) = Av$ where
 $$A = \begin{bmatrix} -1 & 2 & 1 & 3 & 4 \\ 0 & 0 & 2 & -1 & 0 \end{bmatrix}$$
 then $T : \mathbb{R}^5 \to \mathbb{R}^2$.

• **Standard Matrix:** Every linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ has a mn standard matrix A associated with it where

$$T(v) = Av$$

To find the standard matrix, apply T to the basis elements in \mathbb{R}^n. This produces vectors in \mathbb{R}^m which become the *columns* of A:

For example, let

$$T([x_1, x_2, x_3]) = [2x_1 + x_2 - x_3, -x_1 + 3x_2 - 2x_3, 3x_2 + 4x_3]$$

Then

$$T([1, 0, 0]) = [2, -1, 0] \quad T([0, 1, 0]) = [1, 3, 3] \quad T([0, 0, 1]) = [-1, -2, 4]$$

these vectors become the *columns* of A:

$$A = \begin{bmatrix} 2 & 1 & -1 \\ -1 & 3 & -2 \\ 0 & 3 & 4 \end{bmatrix}$$
• **Shortcut Method for Finding the Standard Matrix:** Two examples:

1. Let T be the linear transformation from above, i.e.,

 $$T([x_1, x_2, x_3]) = [2x_1 + x_2 - x_3, -x_1 + 3x_2 - 2x_3, 3x_2 + 4x_3]$$

 Then the first, second and third components of the resulting vector w, can be written respectively as

 $$w_1 = 2x_1 + x_2 - x_3$$
 $$w_2 = -x_1 + 3x_2 - 2x_3$$
 $$w_3 = 3x_2 + 4x_3$$

 Then the standard matrix A is given by the coefficient matrix or the right hand side:

 $$A = \begin{bmatrix} 2 & 1 & -1 \\ -1 & 3 & -2 \\ 0 & 3 & 4 \end{bmatrix}$$

 So,

 $$\begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} 2 & 1 & -1 \\ -1 & 3 & -2 \\ 0 & 3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

2. **Example:** Let

 $$T([x, y, z]) = [x - 2y, 2x + y]$$

 Since $T : \mathbb{R}^3 \rightarrow \mathbb{R}^2$, A is a 3x2 matrix:

 $$w_1 = x - 2y + 0z$$
 $$w_2 = 2x + y + 0z$$

 So,

 $$A = \begin{bmatrix} 1 & -2 & 0 \\ 2 & 1 & 0 \end{bmatrix}$$

• **Geometric Operators:**

 – **Reflection Operators:**

 * **Reflection about the y-axis:** The schematic of reflection about the y-axis is given below. The transformation is given by

 $$w_1 = -x$$
 $$w_2 = y$$

 with standard matrix

 $$A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

 ![Reflection about the y-axis](image)
* Reflection about the x-axis: The schematic of reflection about the x-axis is given below. The transformation is given by

\[w_1 = x \]
\[w_2 = -y \]

with standard matrix

\[
A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}
\]

* Reflection about the line $y = x$: The schematic of reflection about the line $y = x$ is given below. The transformation is given by

\[w_1 = y \]
\[w_2 = x \]

with standard matrix

\[
A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
\]

– Projection Operators:

* Projected onto x-axis: The schematic of projection onto the x-axis is given below. The transformation is given by

\[w_1 = x \]
\[w_2 = 0 \]

with standard matrix

\[
A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}
\]
* Projected onto y-axis: The schematic of projection onto the y-axis is given below. The transformation is given by

\[
\begin{align*}
 w_1 &= 0 \\
 w_2 &= y
\end{align*}
\]

with standard matrix

\[
A = \begin{bmatrix}
 0 & 0 \\
 0 & 1
\end{bmatrix}
\]

* In \(\mathbb{R}^3 \), you can project onto a plane. The standard matrices for the projection is given below.

 · *Projection onto xy-plane:*

\[
A = \begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 0
\end{bmatrix}
\]

 · *Projection onto xz-plane:*

\[
A = \begin{bmatrix}
 1 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 1
\end{bmatrix}
\]

 · *Projection onto yz-plane:*

\[
A = \begin{bmatrix}
 0 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1
\end{bmatrix}
\]
- **Rotation Operator:** We can consider rotating through an angle θ.

If we look at a more detailed depiction of the rotation, as depicted below, we see how we can use trigonometric identities to recover the standard matrix.

Using trigonometric identities, we have

\[
x = r \cos(\phi) \\
y = r \sin(\phi)
\]

and

\[
w_1 = r \cos(\theta + \phi) \\
w_2 = r \sin(\theta + \phi)
\]

Using trigonometric identities on w_1 and w_2, we have

\[
w_1 = r \cos(\theta) \cos(\phi) - r \sin(\theta) \sin(\phi) \\
w_2 = r \sin(\theta) \cos(\phi) + r \cos(\theta) \sin(\phi)
\]

which equals

\[
w_1 = x \cos(\theta) - y \sin(\theta) \\
w_2 = x \sin(\theta) + y \cos(\theta)
\]

if we plug in x and y formulas from above. Therefore, the standard matrix is given by

\[
A = \begin{bmatrix}
\cos(\theta) & -\sin(\theta) \\
\sin(\theta) & \cos(\theta)
\end{bmatrix}
\]
Dilation and Contraction Operators: We can consider the geometric process of dilating or contracting vectors. For example, in \(\mathbb{R}^2 \), the contraction of a vector is given below where \(0 < k < 1 \).

\[
\begin{pmatrix}
k & 0 \\
0 & k
\end{pmatrix}
\]

In each case, the standard matrix is given by

If

* \(0 < k < 1 \), we have contraction and
* \(k > 1 \), we have dilation

In \(\mathbb{R}^3 \), we have the standard matrix

\[
\begin{pmatrix}
k & 0 & 0 \\
0 & k & 0 \\
0 & 0 & k
\end{pmatrix}
\]

• **One-to-One linear transformations**: In college algebra, we could perform a horizontal line test to determine if a function was one-to-one, i.e., to determine if an inverse function exists. Similarly, we say a linear transformation \(T : \mathbb{R}^n \to \mathbb{R}^m \) is one-to-one if \(T \) maps distinct vectors in \(\mathbb{R}^n \) into distinct vectors in \(\mathbb{R}^m \). In other words, a linear transformation \(T : \mathbb{R}^n \to \mathbb{R}^m \) is one-to-one if for every \(w \) in the range of \(T \), there is exactly one \(v \) in \(\mathbb{R}^n \) such that \(T(v) = w \).

• **Examples**:

1. The rotation operator is one-to-one, because there is only one vector \(v \) which can be rotated through an angle \(\theta \) to get any vector \(w \).
2. The projection operator is not one-to-one. For example, both \([2, 4] \) and \([2, -1] \) can be projected onto the \(x \)-axis and result in the vector \([2, 0] \).

• **Linear system equivalent statements**: Recall that for a linear system, the following are equivalent statements:

1. \(A \) is invertible
2. \(Ax = b \) is consistent for every \(n \times 1 \) matrix \(b \)
3. \(Ax = b \) has exactly one solution for every \(n \times 1 \) matrix \(b \)

• Recall, that for every linear transformation \(T : \mathbb{R}^n \to \mathbb{R}^m \), we can represent the linear transformation as

\[
T(v) = Av
\]

where \(A \) is the \(m \times n \) standard matrix associated with \(T \). Using the above equivalent statements with this form of the linear transformation, we have the following theorem.
Theorem: If A is an $n \times n$ matrix and $T : \mathbb{R}^n \to \mathbb{R}^n$ is given by

$$T(v) = Av$$

then the following is equivalent.

1. A is invertible
2. For every w in \mathbb{R}^n, there is some vector v in \mathbb{R}^n such that $T(v) = w$, i.e., the range of T is \mathbb{R}^n.
3. For every w in \mathbb{R}^n, there is a unique vector v in \mathbb{R}^n such that $T(v) = w$, i.e., T is one-to-one.

Examples:

1. **Rotation Operator:** The standard matrix for the rotation operator is given by

$$A = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

To determine if A is invertible, we can find the determinant of A:

$$|A| = \cos^2(\theta) + \sin^2(\theta) = 1 \neq 0$$

so A is invertible. Therefore, the range of the rotation operator in \mathbb{R}^2 is all of \mathbb{R}^2 and it is one-to-one.

2. **Projection Operators:** For each projection operator, we can easily show that $|A| = 0$. Therefore, the projection operator is not one-to-one.

Inverse Operator: If $T : \mathbb{R}^n \to \mathbb{R}^n$ is a one-to-one transformation given by

$$T(v) = Av$$

where A is the standard matrix, then there exists an inverse operator $T^{-1} : \mathbb{R}^n \to \mathbb{R}^n$ and is given by

$$T^{-1}(w) = A^{-1}v$$

Examples:

1. The standard matrix for the rotation operator through an angle θ is

$$A = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

The inverse operator can be found by rotating back through an angle $-\theta$, i.e.,

$$A^{-1} = \begin{bmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{bmatrix}$$

Using trigonometric identities, we can see this is the same as

$$A^{-1} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}$$

2. Let

$$T([x, y]) = [2x + y, 3x + 4y]$$

Then T has the standard matrix

$$A = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$$

Thus, $|A| = 5 \neq 0$, so T is one-to-one and has an inverse operator with standard matrix

$$A^{-1} = \frac{1}{5} \begin{bmatrix} 4 & -1 \\ -3 & 2 \end{bmatrix} = \begin{bmatrix} 4/5 & -1/5 \\ -3/5 & 2/5 \end{bmatrix}$$

So, the inverse operator is given by

$$T^{-1}(w) = A^{-1} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} 4/5 w_1 - 1/5 w_2, -3/5 w_1 + 2/5 w_2 \end{bmatrix}$$
• **Kernel of** T: One of the properties of linear transformations is that

$$T(0) = 0$$

There may be other vectors v in V such that $T(v) = 0$. The *kernel of* T is the set of all vectors v in V such that

$$T(v) = 0$$

It is denoted $\ker(T)$.

• **Example:** Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be given by

$$T([x_1, x_2]) = [x_1 - 2x_2, 0, -x_1]$$

To find $\ker(T)$, we need to find all vectors $v = [x_1, x_2]$ in \mathbb{R}^2, such that $T(v) = 0 = [0, 0, 0]$ in \mathbb{R}^3. In other words,

$$x_1 - 2x_2 = 0$$

$$0 = 0$$

$$-x_1 = 0$$

The only solution to this system if $[0, 0]$. Thus

$$\ker(T) = \{[0, 0]\} = \{0\}$$

• **Example:** Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ be given by $T(x) = Ax$ where

$$A = \begin{bmatrix} 1 & -1 & -2 \\ -1 & 2 & 3 \end{bmatrix}$$

To find $\ker(T)$, we need to find all $v = [x_1, x_2, x_3]$ such that $T(v) = [0, 0]$. In other words, we need to solve the system

$$\begin{bmatrix} 1 & -1 & -2 \\ -1 & 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Putting this in augmented form, we have

$$\begin{bmatrix} 1 & -1 & -2 & | & 0 \\ -1 & 2 & 3 & | & 0 \end{bmatrix}$$

which reduces to

$$\begin{bmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & 1 & | & 0 \end{bmatrix}$$

Therefore, $x_3 = t$ is a free parameter, so the solutions is given by

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} t \\ -t \\ t \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} t$$

Therefore, $\ker(T) = \text{span} \{[1, -1, 1]\}$.

• **Corollary:** If $T : \mathbb{R}^n \to \mathbb{R}^m$ is given by

$$T(v) = Av$$

then $\ker(T)$ is equal to the nullspace of A.

• **Example:** Given $T(v) = Av$ where

$$A = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 2 & 1 \end{bmatrix}$$

find a basis for $\ker(T)$.

Solving the system, we have

$$\begin{bmatrix} 1 & -2 & 1 \\ 0 & 2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1/2 \end{bmatrix}$$

Therefore, a basis for $\ker(T)$ is given by a basis for the nullspace of A: $\{[-2, -1/2, 1]\}$.

• **Example:** Given \(T(v) = Av \) where

\[
A = \begin{bmatrix}
1 & 2 & 0 & 1 & -1 \\
2 & 1 & 3 & 1 & 0 \\
-1 & 0 & -2 & 0 & 1 \\
0 & 0 & 0 & 2 & 8
\end{bmatrix}
\]

find a basis for \(ker(T) \).

Ans: \([[-2, 1, 1, 0, 0], [1, 2, 0, -4, 1]]\)

• **Terminology:** The dimension of \(ker(T) \) is called the nullity of \(T \). In the previous example, the nullity of \(T \) is 2.

• **Range of \(T \):** The range of \(T \) is the set of all vectors \(w \) such that \(T(v) = w \). If \(T : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is given by

\[
T(v) = Av
\]

then the range of \(T \) is the column space of \(A \).

• **Onto:** If \(T : V \rightarrow W \) is a linear transformation from a vector space \(V \) to a vector space \(W \), then \(T \) is said to be onto (or onto \(W \)) if every vector in \(W \) is the image of at least one vector in \(V \), i.e., the range of \(T = W \).

• **Equivalence Statements for One-to-One, Kernel:** If \(T : V \rightarrow W \) is a linear transformation, then the following are equivalent:

1. \(T \) is one-to-one
2. \(ker(T) = \{0\} \)

• **Equivalence Statements for One-to-One, Kernel, and Onto:** If \(T : V \rightarrow V \) is a linear transformation and \(V \) is finite-dimensional, then the following are equivalent:

1. \(T \) is one-to-one
2. \(ker(T) = \{0\} \)
3. \(T \) is onto

• **Isomorphism:** If a linear transformation \(T : V \rightarrow W \) is both one-to-one and onto, then \(T \) is said to be an *isomorphism* and the vector spaces \(V \) and \(W \) are said to be *isomorphic*.