Homework \#1

Math 2010
Due September 15

- The problems should be worked out showing all necessary steps required in obtaining the solution.

1. (1 point)
(a) Determine the head of the vector $\mathbf{u}=[-2,5]$ whose tail is at $(3,2)$.
(b) Sketch the vector from part (a) in both the original position and the standard position.
(c) Find a unit vector in the direction of \mathbf{u}.
2. (1 point each)
(a) Find all constants a such that $[a, 2]$ and $[a,-2]$ are orthogonal.
(b) Find all constants a such that $[a, 4]$ and $[2,5]$ are parallel.
3. (1 point) Find the angle between $[1,0,1]$ and $[0,1,1]$.
4. (1 point each) Let

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 4
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 0 \\
2 & 1 \\
3 & 2
\end{array}\right], \quad C=\left[\begin{array}{rrr}
3 & -1 & 3 \\
4 & 1 & 5 \\
2 & 1 & 3
\end{array}\right], \\
& D=\left[\begin{array}{rr}
3 & -2 \\
2 & 4
\end{array}\right], \quad E=\left[\begin{array}{rrr}
2 & -4 & 5 \\
0 & 1 & 4 \\
3 & 2 & 1
\end{array}\right], \quad F=\left[\begin{array}{rr}
-4 & 5 \\
2 & 3
\end{array}\right]
\end{aligned}
$$

and

$$
O=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

If possible, compute the following by hand.
(a) $-3 C+5 O$
(b) $2 A B D+F$
(c) $\operatorname{tr}\left(A^{T} B^{T}+E\right)$
(d) $A F+D$
(e) $2 A^{T}+B$
5. (1 point) Use the definition of symmetric and properties of matrix addition and transposes to prove that $A+A^{T}$ is symmetric for every square matrix A. Make sure to show all steps and justify each step.

