# Homework \#5 

Math 2010
Due October 29
Worth 20 points!!

1. (3 points each) Determine whether the given set together with the given operations is a vector space. If it is not a vector space, show that at least one property that fails to hold. If it is a vector space, you must show all 10 properties hold.
(a) The set of all ordered triples of real numbers $(x, y, z)$ with the operations

$$
(x, y, z) \oplus\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x^{\prime}, y+y^{\prime}, z^{\prime}\right)
$$

and

$$
c \odot(x, y, z)=(c x, c y, c z)
$$

(b) The set of all ordered triples of real numbers of the form $(0,0, z)$ with the operations

$$
(0,0, z) \oplus\left(0,0, z^{\prime}\right)=\left(0,0, z+z^{\prime}\right)
$$

and

$$
c \odot(0,0, z)=(0,0, c z)
$$

2. (2.5 points each) Determine whether the given set $V$ is a subspace of the given set.
(a) $V$ is the set of all ordered pairs of real numbers $(x, y)$ such that $x>0$ and $y>0$;

$$
(x, y) \oplus\left(x^{\prime}, y^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}\right)
$$

and

$$
c \odot(x, y)=(c x, c y)
$$

Determine if $V$ is a subspace of $R^{2}$.
(b) $V$ is the set of all polynomials of the form $a t^{2}+b t+c$ where $a, b$, and $c$ are real numbers with $b=a+1 ;$

$$
\left(a_{1} t^{2}+b_{1} t+c_{1}\right) \oplus\left(a_{2} t^{2}+b_{2} t+c_{2}\right)=\left(a_{1}+a_{2}\right) t^{2}+\left(b_{1}+b_{2}\right) t+\left(c_{1}+c_{2}\right)
$$

and

$$
r \odot\left(a t^{2}+b t+c\right)=(r a) t^{2}+(r b) t+r c .
$$

Determine if $V$ is a subspace of $P_{2}$.
3. (3 points each) Determine whether $S$ is a basis for the indicated vector space. You must clearly show the 2 properties of basis hold or which property fails to hold if it is not a basis.
(a) $S=\{(0,0,1,1),(-1,1,1,2),(1,1,0,0),(2,1,2,1)\}$ for $R^{4}$
(b) $S=\left\{t^{3}+2 t^{2}+3 t, 2 t^{3}+1,6 t^{3}+8 t^{2}+6 t+4, t^{3}+2 t^{2}+t+1\right\}$ for $P_{3}$
(c) $S=\left\{\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]\right\}$ for $M_{2,2}$

