Homework \#6

Math 2010
Due November 17

1. Show that the matrix

$$
A=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 5 & -10 \\
1 & 0 & 2 & 0 \\
1 & 0 & 0 & 3
\end{array}\right]
$$

is diagonalizable and find the matrix P and D such that $P^{-1} A P=D$.
2. Given

$$
A=\left[\begin{array}{rrrr}
-2 & -4 & 4 & 5 \\
3 & 6 & -6 & -4 \\
-2 & -4 & 4 & 9
\end{array}\right]
$$

(a) Find a basis for the row space of A.
(b) Find a basis for the column space of A.
(c) Find a basis for the nullspace of A.
(d) Give the nullity of A ?
(e) Give the rank of A ?
3. Find a basis for the subspace of \Re^{3} spanned by

$$
S=\{[4,4,8],[1,1,2],[1,1,1]\}
$$

4. Find a subset of vectors from the set S that is a basis for the subspace spanned by

$$
S=\{[2,7,-2,2],[4,14,-4,4],[-3,-6,1,-2],[-6,-3,-2,-2]\}
$$

5. Determine whether the nonhomegeneous system $A \mathbf{x}=\mathbf{b}$ given below is consistent. If so, write the solution in the form $\mathbf{x}=\mathbf{x}_{h}+\mathbf{x}_{p}$ where \mathbf{x}_{h} is the solution of $A \mathbf{x}=\mathbf{0}$ and \mathbf{x}_{p} is the particular solution of $A \mathbf{x}=\mathbf{b}$. The system is given by

$$
\begin{aligned}
x+3 y+10 z & =18 \\
-2 x+7 y+32 z & =29 \\
-x+3 y+14 z & =12 \\
x+y+2 z & =8
\end{aligned}
$$

