MATH 2010 Test # 2 November 1, 2010

Name:

You must **show all work** to receive full credit. Parts of questions will not necessarily be weighted equally.

1. Given

$$A = \left[\begin{array}{cc} 4 & 2 \\ 2 & 7 \end{array} \right]$$

- (a) (5 points) Find the eigenvalues of A.
- (b) (9 points) Find the corresponding eigenvectors for the matrix.
- 2. (14 points) Determine whether the set of all ordered pairs of real numbers with the operations

$$(x, y) \oplus (x', y') = (y + y', x + x')$$

and

 $c \odot (x, y) = (cx, cy)$

is a vector space. Show all supporting work for credit. If V is a vector space, you must show all properties are satisfied. If V is not a vector space, you need to only correctly show one property that fails.

Recall, a vector space V must satisfy the following properties:

- (A) If **u** and **v** are any elements of V, then $\mathbf{u} \oplus \mathbf{v}$ is in V.
 - (A1) $\mathbf{u} \oplus \mathbf{v} = \mathbf{v} \oplus \mathbf{u}$, for \mathbf{u} and \mathbf{v} in V.
 - (A2) $\mathbf{u} \oplus (\mathbf{v} \oplus \mathbf{w}) = (\mathbf{u} \oplus \mathbf{v}) \oplus \mathbf{w}$, for \mathbf{u}, \mathbf{v} and \mathbf{w} in V.
 - (A3) There is an element **0** in V such that $\mathbf{u} \oplus \mathbf{0} = \mathbf{0} \oplus \mathbf{u} = \mathbf{u}$ for all \mathbf{u} in V.
 - (A4) For each **u** in V, there is an element $-\mathbf{u}$ in V such that $\mathbf{u} \oplus -\mathbf{u} = \mathbf{0}$.
- (S) If **u** is any element in V and c is any real number, then $c \odot \mathbf{u}$ is in V.
 - (S1) $c \odot (\mathbf{u} \oplus \mathbf{v}) = c \odot \mathbf{u} \oplus c \odot \mathbf{v}$ for all real numbers c and all \mathbf{u} and \mathbf{v} in V.
 - (S2) $(c+d) \odot \mathbf{u} = c \odot \mathbf{u} \oplus d \odot \mathbf{u}$ for all real numbers c and d and all \mathbf{u} in V.
 - (S3) $c \odot (d \odot \mathbf{u}) = (cd) \odot \mathbf{u}$ for all real numbers c and d and all \mathbf{u} in V.
 - (S4) $1 \odot \mathbf{u} = \mathbf{u}$ for all \mathbf{u} in V.
- 3. (14 points) Consider the set W of all vectors in \mathbb{R}^3 of the form (x, y, z) where z = x y with standard operations in \mathbb{R}^3 :

$$(x, y, z) \oplus (x', y', z') = (x + x', y + y', z + z')$$

and

$$c \odot (x, y, z) = (cx, cy, cz).$$

Is W a subspace of \mathbb{R}^3 ? Show all supporting work for credit.

- 4. (a) (2 points) Explain what it means for a set S to span a vector space V.
 - (b) (10 points) Determine whether the vectors $v_1 = (2, 1, -1)$, $v_2 = (-1, 3, 2)$, $v_3 = (1, 4, 1)$ and $v_4 = (5, -1, -4)$ span R^3 .

- 5. (a) (2 points) Explain what is means to say a set S is linearly independent.
 - (b) (10 points) Determine if the set $S = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ is linearly independent or dependent.
- 6. (a) (2 points) State the requirements for a set S to be a basis for a vector space V.
 - (b) (10 points) Determine whether the set $S = \{t 1, t^2 + t 2, t^2 + t\}$ is a basis for P_2 .
- 7. (14 points) Express (0, -5, 2) as a linear combination of the vectors $v_1 = (1, -1, 3)$, $v_2 = (2, 4, 5)$ and $v_3 = (0, 1, 1)$.
- 8. (1 point each) Without any work, pick the correct choice.
 - (a) If a set S is in \mathbb{R}^n has more than n vectors, S is
 - i. linearly independent,
 - ii. linearly dependent
 - iii. not enough information is provided to determine?
 - (b) If a set S is in \mathbb{R}^n has less than n vectors, S is
 - i. linearly independent,
 - ii. linearly dependent
 - iii. not enough information is provided to determine?
 - (c) If a set S is in $M_{n,m}$ has more than m * n vectors, S
 - i. spans $M_{n,m}$
 - ii. does not span $M_{n,m}$
 - iii. not enough information is provided to determine?
 - (d) If a set S is in $M_{n,m}$ has less than m * n vectors, S
 - i. spans $M_{n,m}$
 - ii. does not span $M_{n,m}$
 - iii. not enough information is provided to determine?
 - (e) If a set S is in P_n has n+1 vectors, S
 - i. is a basis for P_n
 - ii. is not a basis for P_n
 - iii. not enough information is provided to determine?
 - (f) If A is a nxn matrix, then $\lambda = 0$ can be an eigenvalue of A.
 - i. True
 - ii. False
 - (g) If A is a nxn matrix, then x = 0 can be an eigenvector of A.
 - i. True
 - ii. False
 - (h) If $\lambda(\lambda + 5)(\lambda 2) = 0$ is the characteristic equation of A, then
 - i. A is 2x2 and not invertible.
 - ii. A is 2x2 and invertible.
 - iii. A is 3x3 and not invertible.
 - iv. A is 3x3 and not invertible.
 - v. The size of A cannot be determined but A is invertible.
 - vi. The size of A cannot be determined but A is not invertible.
 - vii. Not enough information is provided to determine any of the above.