MATH 2010

Test \# 2
November 1, 2010

Name:
You must show all work to receive full credit. Parts of questions will not necessarily be weighted equally.

1. Given

$$
A=\left[\begin{array}{ll}
4 & 2 \\
2 & 7
\end{array}\right]
$$

(a) (5 points) Find the eigenvalues of A.
(b) (9 points) Find the corresponding eigenvectors for the matrix.
2. (14 points) Determine whether the set of all ordered pairs of real numbers with the operations

$$
(x, y) \oplus\left(x^{\prime}, y^{\prime}\right)=\left(y+y^{\prime}, x+x^{\prime}\right)
$$

and

$$
c \odot(x, y)=(c x, c y)
$$

is a vector space. Show all supporting work for credit. If V is a vector space, you must show all properties are satisfied. If V is not a vector space, you need to only correctly show one property that fails.
Recall, a vector space V must satisfy the following properties:
(A) If \mathbf{u} and \mathbf{v} are any elements of V, then $\mathbf{u} \oplus \mathbf{v}$ is in V.
(A1) $\mathbf{u} \oplus \mathbf{v}=\mathbf{v} \oplus \mathbf{u}$, for \mathbf{u} and \mathbf{v} in V.
(A2) $\mathbf{u} \oplus(\mathbf{v} \oplus \mathbf{w})=(\mathbf{u} \oplus \mathbf{v}) \oplus \mathbf{w}$, for \mathbf{u}, \mathbf{v} and \mathbf{w} in V.
(A3) There is an element $\mathbf{0}$ in V such that $\mathbf{u} \oplus \mathbf{0}=\mathbf{0} \oplus \mathbf{u}=\mathbf{u}$ for all \mathbf{u} in V.
(A4) For each \mathbf{u} in V, there is an element $-\mathbf{u}$ in V such that $\mathbf{u} \oplus-\mathbf{u}=\mathbf{0}$.
(S) If \mathbf{u} is any element in V and c is any real number, then $c \odot \mathbf{u}$ is in V.
(S1) $c \odot(\mathbf{u} \oplus \mathbf{v})=c \odot \mathbf{u} \oplus c \odot \mathbf{v}$ for all real numbers c and all \mathbf{u} and \mathbf{v} in V.
(S2) $(c+d) \odot \mathbf{u}=c \odot \mathbf{u} \oplus d \odot \mathbf{u}$ for all real numbers c and d and all \mathbf{u} in V.
$(\mathrm{S} 3) c \odot(d \odot \mathbf{u})=(c d) \odot \mathbf{u}$ for all real numbers c and d and all \mathbf{u} in V.
(S4) $1 \odot \mathbf{u}=\mathbf{u}$ for all \mathbf{u} in V.
3. (14 points) Consider the set W of all vectors in R^{3} of the form (x, y, z) where $z=x-y$ with standard operations in R^{3} :

$$
(x, y, z) \oplus\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}\right)
$$

and

$$
c \odot(x, y, z)=(c x, c y, c z)
$$

Is W a subspace of R^{3} ? Show all supporting work for credit.
4. (a) (2 points) Explain what it means for a set S to span a vector space V.
(b) (10 points) Determine whether the vectors $v_{1}=(2,1,-1), v_{2}=(-1,3,2), v_{3}=(1,4,1)$ and $v_{4}=(5,-1,-4)$ span R^{3}.
5. (a) (2 points) Explain what is means to say a set S is linearly independent.
(b) (10 points) Determine if the set $S=\left\{\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{rr}0 & -1 \\ 0 & 0\end{array}\right],\left[\begin{array}{rr}0 & -1 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right\}$ is linearly independent or dependent.
6. (a) (2 points) State the requirements for a set S to be a basis for a vector space V.
(b) (10 points) Determine whether the set $S=\left\{t-1, t^{2}+t-2, t^{2}+t\right\}$ is a basis for P_{2}.
7. (14 points) Express $(0,-5,2)$ as a linear combination of the vectors $v_{1}=(1,-1,3), v_{2}=(2,4,5)$ and $v_{3}=(0,1,1)$.
8. (1 point each) Without any work, pick the correct choice.
(a) If a set S is in R^{n} has more than n vectors, S is
i. linearly independent,
ii. linearly dependent
iii. not enough information is provided to determine?
(b) If a set S is in R^{n} has less than n vectors, S is
i. linearly independent,
ii. linearly dependent
iii. not enough information is provided to determine?
(c) If a set S is in $M_{n, m}$ has more than $m * n$ vectors, S
i. spans $M_{n, m}$
ii. does not $\operatorname{span} M_{n, m}$
iii. not enough information is provided to determine?
(d) If a set S is in $M_{n, m}$ has less than $m * n$ vectors, S
i. spans $M_{n, m}$
ii. does not $\operatorname{span} M_{n, m}$
iii. not enough information is provided to determine?
(e) If a set S is in P_{n} has $n+1$ vectors, S
i. is a basis for P_{n}
ii. is not a basis for P_{n}
iii. not enough information is provided to determine?
(f) If A is a $n \mathrm{x} n$ matrix, then $\lambda=0$ can be an eigenvalue of A.
i. True
ii. False
(g) If A is a $n \mathrm{x} n$ matrix, then $x=0$ can be an eigenvector of A.
i. True
ii. False
(h) If $\lambda(\lambda+5)(\lambda-2)=0$ is the characteristic equation of A, then
i. A is 2 x 2 and not invertible.
ii. A is 2 x 2 and invertible.
iii. A is 3×3 and not invertible.
iv. A is 3×3 and not invertible.
v. The size of A cannot be determined but A is invertible.
vi. The size of A cannot be determined but A is not invertible.
vii. Not enough information is provided to determine any of the above.

