MATH 2010

Test \# 3
December 3, 2010

Name:
You must show all work to receive full credit. Parts of questions will not necessarily be weighted equally.

1. Given

$$
A=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
3 & 0 & 1
\end{array}\right]
$$

(a) (6 points) Find the geometric and algebraic multiplicity of each eigenvalue of A.
(b) (6 points) Determine whether or not A is diagonalizable. If A is diagonalizable, then find a matrix P that diagonalizes A and $P^{-1} A P$ without calculating P^{-1}.
2. Consider the basis $B=\{[2,2],[4,0]\}$ and $B^{\prime}=\{[1,3],[-1,-1]\}$ and assume

$$
[x]_{B}=\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

(a) (5 points) Find x in the standard basis.
(b) (6 points) Find the transition matrix from B to B^{\prime}.
(c) (5 points) Find $[x]_{B^{\prime}}$.
(d) (6 points) If T is a linear transformation from $\Re^{2} \rightarrow \Re^{3}$ such that $T([1,3])=[0,-2,1]$ and $T([-1,-1])=[-1,1,3]$, find $T(x)$ where $[x]_{B}$ is given as

$$
[x]_{B}=\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

Hint: use the information obtained in part (c).
3. (7 points) Find a subset of the vectors $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ that forms a basis for the space spanned by the vectors where

$$
\mathbf{v}_{1}=[1,0,1,1], \mathbf{v}_{2}=[-3,3,7,1], \mathbf{v}_{3}=[-1,3,9,3], \mathbf{v}_{4}=[-5,3,5,-1]
$$

4. Given

$$
A=\left[\begin{array}{rrrrr}
1 & 4 & 5 & 6 & 9 \\
3 & -2 & 1 & 4 & -1 \\
-1 & 0 & -1 & -2 & -1 \\
2 & 3 & 5 & 7 & 8
\end{array}\right]
$$

and it's reduced row echelon form

$$
B=\left[\begin{array}{lllll}
1 & 0 & 1 & 2 & 1 \\
0 & 1 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) (5 points) Find a basis for the row space of A.
(b) (5 points) Find a basis for the column space of A.
(c) (7 points) Find a basis for the nullspace of A.
(d) (1 point) What is the nullity of A ?
(e) (1 point) What is the rank of A ?
5. (2 points) Find the domain and codomain of the transformation $T_{A}(x)=A x$ where A is a 1 x 6 matrix.
6. (8 points) Determine whether the linear transformation

$$
T(x, y, z)=(0,2 x+3 y)
$$

is linear. Show all necessary steps.
7. Given the linear transformation

$$
T\left(\left[x_{1}, x_{2}, x_{3}\right]\right)=\left[2 x_{1}-x_{2}+x_{2}, x_{2}+x_{3}, 0\right]
$$

(a) (5 points) Find the standard matrix for the operator T.
(b) (5 points) Find the preimage of $\mathbf{w}=[0,-1,0]$ for the transformation.
(c) (4 points) Determine if the transformation is one-to-one.
(d) (1 point) Does an inverse operator exist, if so, find the standard matrix for the inverse operator.
(e) (5 points) Find a basis for $\operatorname{ker}(T)$.
(f) (5 points) Find a basis for the range of T.
8. True of False
(a) (1 point) If A is diagonalizable, then there is a unique P such that $P^{-1} A P$ is diagonal.
(b) (1 point) For every matrix A, if every eigenvalue of a matrix A has geometric multiplicity 1 , then A is diagonalizable.
(c) (1 point) For every matrix A, if every eigenvalue of a matrix A has algebraic multiplicity 1 , then A is diagonalizable.
(d) (1 point) Transition matrices from one basis to another are invertible.
(e) (1 point) If $\operatorname{ker}(T)=\{0\}$, then the nullity of T is 1 and T is one-to-one.

