Homework #6

Math 2010 Due April 7

1. Let

$$x = \left[\begin{array}{c} 1\\1 \end{array} \right]$$

with respect to the standard basis in \Re^2 . Find $[x]_{B'}$ where $B' = \{[2, -4], [3, 8]\}.$

2. Let

$$x = \left[\begin{array}{c} a \\ b \end{array} \right]$$

with respect to the standard basis in \Re^2 . Find $[x]_{B'}$ where $B' = \{[1,1], [0,2]\}$.

3. Let

$$p(x) = 2 - x + x^2$$

Then the coordinate vector of p with respect to the standard basis $\{1, x, x^2\}$ in P_2 is given by

$$[p] = \left[\begin{array}{c} 2\\ -1\\ 1 \end{array} \right].$$

Find the coordinate vector with respect to the the basis $B' = \{1 + x, 1 + x^2, x + x^2\}$

4. Let

$$[x]_B = \begin{bmatrix} 6\\ -1\\ 4 \end{bmatrix}$$

where $B = \{[1, 0, 0], [2, 2, 0], [3, 3, 3]\}$. Find $[x]_{B'}$ where B' is the standard basis.

5. Consider

 $B = \{[2, 2], [4, -1]\}$

and

 $B' = \{[1,3], [-1,-1]\}$

(a) Assume

$$x = \left[\begin{array}{c} 3\\ -5 \end{array} \right]$$

with respect to the standard basis. Compute $[x]_B$ with respect to basis B.

- (b) Find the transition matrix from B to B'.
- (c) Use the transition matrix to find $[x]_{B'}$ given $[x]_B$ from part (a).
- (d) Check your work by computing $[x]_{B'}$ directly from the coordinate vector x with respect to the standard basis.