Homework \#6

Math 2010
Due April 7

1. Let

$$
x=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

with respect to the standard basis in \Re^{2}. Find $[x]_{B^{\prime}}$ where $B^{\prime}=\{[2,-4],[3,8]\}$.
2. Let

$$
x=\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

with respect to the standard basis in \Re^{2}. Find $[x]_{B^{\prime}}$ where $B^{\prime}=\{[1,1],[0,2]\}$.
3. Let

$$
p(x)=2-x+x^{2}
$$

Then the coordinate vector of p with respect to the standard basis $\left\{1, x, x^{2}\right\}$ in P_{2} is given by

$$
[p]=\left[\begin{array}{r}
2 \\
-1 \\
1
\end{array}\right]
$$

Find the coordinate vector with respect to the the basis $B^{\prime}=\left\{1+x, 1+x^{2}, x+x^{2}\right\}$
4. Let

$$
[x]_{B}=\left[\begin{array}{r}
6 \\
-1 \\
4
\end{array}\right]
$$

where $B=\{[1,0,0],[2,2,0],[3,3,3]\}$. Find $[x]_{B^{\prime}}$ where B^{\prime} is the standard basis.
5. Consider

$$
B=\{[2,2],[4,-1]\}
$$

and

$$
B^{\prime}=\{[1,3],[-1,-1]\}
$$

(a) Assume

$$
x=\left[\begin{array}{r}
3 \\
-5
\end{array}\right]
$$

with respect to the standard basis. Compute $[x]_{B}$ with respect to basis B.
(b) Find the transition matrix from B to B^{\prime}.
(c) Use the transition matrix to find $[x]_{B^{\prime}}$ given $[x]_{B}$ from part (a).
(d) Check your work by computing $[x]_{B^{\prime}}$ directly from the coordinate vector x with respect to the standard basis.

