# MATH 2010 

Test \# 1
February 17, 2010

Name:
You must show all work to receive full credit. No work = no credit!! Parts of questions will not necessarily be weighted equally.

1. (12 points each) Solve the system by hand using either Gaussian elimination and back substitution or Gauss-Jordan elimination. Make sure to clearly mark your solutions and show your work.
(a) $\begin{aligned} & x_{1}-x_{2}+2 x_{3}=4 \\ & x_{1}+3 x_{3}=6 \\ & 2 x_{1}-3 x_{2}+5 x_{3}=4 \\ & 3 x_{1}+2 x_{2}-x_{3}=1 \\ & \\ &\left.\text { (b) } \begin{array}{rl} & x_{3}\end{array}\right) 2 x_{4}=3 \\ & 2 x_{1}+4 x_{2}-2 x_{3}=4 \\ & 2 x_{1}+4 x_{2}-x_{3}+2 x_{4}=7\end{aligned}$
2. (12 points) How should the coefficients $a, b$, and $c$ be chosen so that the system

$$
\begin{aligned}
a x+b y-3 z & =-3 \\
-2 x-b y+c z & =-1 \\
a x+3 y-c z & =-3
\end{aligned}
$$

has the solution $x=1, y=-1$, and $z=2$ ?
3. (12 points) Find a matrix $X$ such that

$$
X\left[\begin{array}{rrr}
-1 & 0 & 1 \\
0 & 1 & 0 \\
3 & 1 & -1
\end{array}\right]=\left[\begin{array}{rrr}
2 & 2 & 0 \\
-3 & 1 & 5
\end{array}\right]
$$

4. (10 points) Use $|A|$ to find all the values of $\lambda$ such that the system $A x=0$ has only the trivial solution where

$$
A=\left[\begin{array}{ccc}
\lambda-4 & 0 & 0 \\
0 & \lambda & 2 \\
0 & 3 & \lambda-1
\end{array}\right]
$$

5. (1 1/2 points each) Let

$$
\left[\begin{array}{rrr|r}
a & 0 & b & 2 \\
0 & a & 4-b & 2 \\
0 & 0 & b-2 & b-2
\end{array}\right]
$$

be the augmented matrix for the linear system. By inspection, for what values of $a$ and $b$ does the system have
(a) a unique solution
(b) a one-parameter solution
(c) a two-parameter solution
(d) no solution
6. (12 points) If possible, find the inverse of the matrix

$$
A=\left[\begin{array}{rrr}
1 & -2 & 2 \\
-1 & 1 & 3 \\
1 & -1 & -4
\end{array}\right]
$$

7. (12 points) Find $|A|$ for the matrix

$$
A=\left[\begin{array}{rrrr}
1 & -2 & 3 & 0 \\
-1 & 1 & 0 & 2 \\
0 & 2 & 0 & 3 \\
3 & 4 & 0 & -2
\end{array}\right]
$$

8. (4 points) Using properties of matrix addition, multiplication and properties of inverses, show that if $A, B$, and $A+B$ are invertible matrices with the same size, then

$$
A\left(A^{-1}+B^{-1}\right) B(A+B)^{-1}=I
$$

Make sure to justify each step with the appropriate property.
9. (1 point each) Suppose that $A, B, C, D$, and $E$ are matrices with the following sizes:

$$
A:(4 x 1) \quad B:(4 x 8) \quad C:(8 x 2) \quad D:(1 x 2) \quad E:(1 x 4)
$$

Determine whether the given matrix expression is defined. For those that are defined, give the size of the resulting matrix.
(a) $E A$
(b) $2 A+C$
(c) $C^{T}(E B)^{T}+D^{T}$
10. ( 1 point) If $A$ is a $6 \times 4$ matrix and $B$ is a $m \mathrm{x} n$ matrix such that $B^{T} A^{T}$ is a 2 x 6 matrix, then what must $m$ and $n$ be?
11. (1 point each) Determine whether the following statements are true or false.
(a) If a linear system has more unknowns than equations, then it must have infinitely many solutions.
(b) If a homogeneous linear system has more unknowns than equations, then it must have infinitely many solutions.
(c) Adding a constant to a linear equation is an acceptable elementary row operation.
(d) If $A$ and $B$ are $2 \times 2$ matrices, then $A B=B A$.

