MATH 2010

Test \# 2
March 29, 2011

Name:
You must show all work to receive full credit. Parts of questions will not necessarily be weighted equally.

1. (10 points) Use adjoints to find the inverse of the following matrix

$$
A=\left[\begin{array}{rrr}
1 & 0 & -1 \\
2 & 5 & 2 \\
0 & 0 & 3
\end{array}\right]
$$

2. (10 points) Given $\mathbf{u}=(1,-1,2), \mathbf{v}=(0,2,3)$ and $\mathbf{w}=(0,1,1)$, find \mathbf{x} provided

$$
5 \mathbf{u}-2 \mathbf{x}=3 \mathbf{v}+\mathbf{w}-(\mathbf{u} \cdot \mathbf{w}) \mathbf{x}
$$

3. (10 points) Given $\mathbf{u}=(10,-5,15)$ and $\mathbf{v}=(-2,1,-3)$, find
(a) the angle between \mathbf{u} and \mathbf{v}
(b) a unit vector in the direction of \mathbf{v}
4. (10 points) Find the representation for all vectors in R^{4} that are simultaneously orthogonal to all both vector: $\mathbf{u}=(1,1,1,1)$ and $\mathbf{v}=(-2,-2,-2,3)$. (Hint: you may need to solve a linear system.)
5. (10 points) Find $(3 \mathbf{u}-\mathbf{v}) \cdot(\mathbf{u}-3 \mathbf{v})$ given $\mathbf{u} \cdot \mathbf{u}=8, \mathbf{u} \cdot \mathbf{v}=7$, and $\mathbf{v} \cdot \mathbf{v}=6$.
6. (10 points) Determine whether the set of all ordered triplets of real numbers with the operations

$$
[x, y, z] \oplus\left[x^{\prime}, y^{\prime}, z^{\prime}\right]=[0,0,0]
$$

and

$$
c \odot[x, y, z]=[c x, c y, c z]
$$

is a vector space. Show all supporting work for credit. If V is a vector space, you must show all properties are satisfied. If V is not a vector space, you need to only correctly show one property that fails.
Recall, a vector space V must satisfy the following properties:
(A) If \mathbf{u} and \mathbf{v} are any elements of V, then $\mathbf{u} \oplus \mathbf{v}$ is in V.
(A1) $\mathbf{u} \oplus \mathbf{v}=\mathbf{v} \oplus \mathbf{u}$, for \mathbf{u} and \mathbf{v} in V.
(A2) $\mathbf{u} \oplus(\mathbf{v} \oplus \mathbf{w})=(\mathbf{u} \oplus \mathbf{v}) \oplus \mathbf{w}$, for \mathbf{u}, \mathbf{v} and \mathbf{w} in V.
(A3) There is an element $\mathbf{0}$ in V such that $\mathbf{u} \oplus \mathbf{0}=\mathbf{0} \oplus \mathbf{u}=\mathbf{u}$ for all \mathbf{u} in V.
(A4) For each \mathbf{u} in V, there is an element $-\mathbf{u}$ in V such that $\mathbf{u} \oplus-\mathbf{u}=\mathbf{0}$.
(S) If \mathbf{u} is any element in V and c is any real number, then $c \odot \mathbf{u}$ is in V.
(S1) $c \odot(\mathbf{u} \oplus \mathbf{v})=c \odot \mathbf{u} \oplus c \odot \mathbf{v}$ for all real numbers c and all \mathbf{u} and \mathbf{v} in V.
(S2) $(c+d) \odot \mathbf{u}=c \odot \mathbf{u} \oplus d \odot \mathbf{u}$ for all real numbers c and d and all \mathbf{u} in V.
$(\mathrm{S} 3) c \odot(d \odot \mathbf{u})=(c d) \odot \mathbf{u}$ for all real numbers c and d and all \mathbf{u} in V.
(S4) $1 \odot \mathbf{u}=\mathbf{u}$ for all \mathbf{u} in V.
7. (10 points) Consider the set W of all vectors in 2 x 2 matrices of the form

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

such that

$$
b=0 \quad \text { and } a+c+d=0
$$

with standard operations in $M_{2,2}$:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \oplus\left[\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a+a^{\prime} & b+b^{\prime} \\
c+c^{\prime} & d+d^{\prime}
\end{array}\right]
$$

and

$$
k \odot\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
k a & k b \\
k c & k d
\end{array}\right] .
$$

Is W a subspace of $M_{2,2}$? Show all supporting work for credit.
8. (10 points) Determine whether the polynomials $p_{1}=2 t^{2}+t+1, p_{2}=3 t^{2}+1, p_{3}=5 t^{2}+t+2$ and $p_{4}=6 t^{2}+2 \operatorname{span} P_{2}$.
9. (10 points) Determine if the set $S=\{[1,1,2,3],[4,1,5,6],[7,1,8,3]\}$ is linearly independent or dependent.
10. (a) (2 points) State the requirements for a set S to be a basis for a vector space V.
(b) (8 points) Determine if the set $S=\left\{\left[\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right],\left[\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}-3 & 0 \\ -1 & 1\end{array}\right],\left[\begin{array}{ll}4 & 1 \\ 0 & 0\end{array}\right]\right\}$ is a basis for $M_{2,2}$. Explain how what you did shows that S is or is not a basis for $M_{2,2}$, i.e., explain how what you did shows that S satisfies or does not satisfy all the requirements stated in part (a).

