Name:
You must show all work to receive full credit. Parts of questions will not necessarily be weighted equally.

1. Consider the basis $B=\{[-1,-1],[0,1]\}$ and $B^{\prime}=\{[1,2],[2,5]\}$ and assume

$$
[x]_{B}=\left[\begin{array}{r}
2 \\
-1
\end{array}\right]
$$

(a) (6 points) Find x in the standard basis.
(b) (6 points) Find the transition matrix from B to B^{\prime}.
(c) (5 points) Find $[x]_{B^{\prime}}$.
(d) (6 points) If T is a linear transformation from $\Re^{2} \rightarrow \Re^{3}$ such that $T([1,2])=[1,-1,0]$ and $T([2,5])=[0,1,-2]$, find $T(x)$ where $[x]_{B}$ is given as

$$
[x]_{B}=\left[\begin{array}{r}
2 \\
-1
\end{array}\right]
$$

Hint: use the information obtained in part (c).
2. (8 points) Find a subset of the vectors $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}, \mathbf{v}_{6}\right\}$ that forms a basis for the space spanned by the vectors where

$$
\mathbf{v}_{1}=[0,2,2], \mathbf{v}_{2}=[0,4,4], \mathbf{v}_{3}=[-2,-10,-5], \mathbf{v}_{4}=[0,6,6], \mathbf{v}_{5}=[6,12,-5], \mathbf{v}_{6}=[12,28,-1]
$$

3. Given

$$
A=\left[\begin{array}{rrrrrr}
1 & 3 & -2 & 0 & 2 & 0 \\
2 & 6 & -5 & -2 & 4 & -3 \\
0 & 0 & 5 & 10 & 0 & 15 \\
2 & 6 & 0 & 8 & 4 & 18
\end{array}\right]
$$

and it's reduced row echelon form

$$
B=\left[\begin{array}{rrrrrr}
1 & 3 & -2 & 0 & 2 & 0 \\
0 & 0 & 1 & 2 & 0 & 3 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) (5 points) Find a basis for the row space of A.
(b) (5 points) Find a basis for the column space of A.
(c) (7 points) Find a basis for the nullspace of A.
(d) (1 point) What is the nullity of A ?
(e) (1 point) What is the rank of A ?
4. (2 points) Find the domain and codomain of the transformation $T_{A}(x)=A x$ where A is a 3×5 matrix.
5. (8 points) Determine whether the linear transformation

$$
T(x, y, z)=(x+1,-3 y)
$$

is linear. Show all necessary steps.
6. Given the linear transformation

$$
T\left(\left[x_{1}, x_{2}, x_{3}\right]\right)=\left[-2 x_{1}+4 x_{2},-x_{1}+2 x_{2},-3 x_{3}\right]
$$

(a) (6 points) Find the standard matrix for the operator T.
(b) (7 points) Find the preimage of $\mathbf{w}=[6,3,-3]$ for the transformation.
(c) (4 points) Determine if the transformation is one-to-one.
(d) (1 point) Does an inverse operator exist, if so, find the standard matrix for the inverse operator.
(e) (5 points) Find a basis for $\operatorname{ker}(T)$.
(f) (5 points) Find a basis for the range of T.
7. Given

$$
A=\left[\begin{array}{rr}
4 & 2 \\
0 & -1
\end{array}\right]
$$

(a) (5 points) Find the eigenvalues of A.
(b) (7 points) Find the corresponding eigenvectors for the matrix.

