MATH 2010

Test \# 1
February 14, 2012

Name:
You must show all work to receive full credit. No work = no credit!! Parts of questions will not necessarily be weighted equally.

1. (12 points) Solve the following system by hand using either Gaussian elimination and back substitution or Gauss-Jordan elimination. Make sure to clearly mark your solutions and show your work.

$$
\begin{aligned}
-3 x_{1}-6 x_{2}+x_{3}+13 x_{4} & = \\
x_{1}+2 x_{2} & -12 \\
-x_{1}-2 x_{2}+2 x_{3}+11 x_{4} & =5 \\
2 x_{1}+4 x_{2}+x_{3}-2 x_{4} & =13
\end{aligned}
$$

2. (4 points each) Determine the solution x for each system $A x=b$ where the following matrices represent the row-echelon form of the augmented matrix $[A \mid b]$.
(a) $\left[\begin{array}{rrrrr}0 & 1 & -1 & 3 & 2 \\ 0 & 0 & 1 & 4 & -5 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
(b) $\left[\begin{array}{rrrr}1 & -2 & 3 & 0 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 1\end{array}\right]$
3. (12 points) Find the values of k for which the following system does not have a unique solution.

$$
\begin{aligned}
& (k-1) x_{1}+\quad 3 x_{2}=-2 \\
& 2 x_{1}+(k-2) x_{2}=0
\end{aligned}
$$

4. (12 points) Find the numbers x and y such that $A^{T} B=C$ where

$$
A=\left[\begin{array}{ll}
2 & y \\
x & 0 \\
y & y
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 0 \\
x & 1 \\
1 & 1
\end{array}\right], \quad C=\left[\begin{array}{rr}
0 & -8 \\
-12 & -6
\end{array}\right]
$$

5. Given the matrix

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
3 & 3 & 4 \\
2 & 2 & 3
\end{array}\right]
$$

(a) (12 points) Find A^{-1} if it exists.
(b) (4 points) Let

$$
b=\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right] .
$$

Use A^{-1} from part (a) to find the solution to $A x=b$.
6. (12 points) Find $|A|$ for the matrix using cofactor expansion

$$
A=\left[\begin{array}{rrr}
0 & -1 & 2 \\
2 & -4 & 3 \\
2 & 1 & 0
\end{array}\right]
$$

7. (6 points) Prove that if A is symmetric and nonsingular, then A^{-1} is symmetric. (Hint: Recall that a matrix B is symmetric if $B^{T}=B$.)
8. (12 points) Find the eigenvalues and corresponding eigenvectors for the matrix

$$
A=\left[\begin{array}{rr}
1 & 0 \\
2 & -3
\end{array}\right]
$$

9. (1 point each) Suppose that A, B, C, D, and E are matrices with the following sizes:

$$
A:(4 x 1) \quad B:(4 x 8) \quad C:(8 x 2) \quad D:(1 x 2) \quad E:(1 x 4)
$$

Determine whether the given matrix expression is defined. For those that are defined, give the size of the resulting matrix.
(a) $E A$ \qquad
(b) $2 A+C$
(c) $C^{T}(E B)^{T}+D^{T}$
10. (1 point each) For the each of the following, determine if the statement is true or false for general matrices A and B.
(a) A homogeneous system (i.e., a system in which the right hand side, b, equals 0) always has a solution.
(b) If $A B=A C$, then $B=C$.
(c) $\left(A^{T}\right)^{T}=A$ only if A is symmetric.
(d) $(A B)^{-1}=B^{-1} A^{-1}$.
(e) There is always a solution to the system $A x=b$.
(f) $|4 A|=4|A|$ for all 4 x 4 matrices A.
(g) If A is an invertible $n \mathrm{x} n$ matrix, then $\left|A^{T}\right|=\left|A^{-1}\right|$. \qquad
(h) If A is an invertible $n \mathrm{x} n$ matrix, then $\left|A^{T}\right|=\frac{1}{\left|A^{-1}\right|}$. \qquad
(i) If A is a 6×4 matrix and B is a $m \times n$ matrix such that $B^{T} A^{T}$ is a 2×6 matrix, then m must equal 2 and n must equal 4 .

