MATH 2010 Test # 1 February 14, 2012

Name:___

You must **show all work** to receive full credit. **No work** = **no credit**!! Parts of questions will not necessarily be weighted equally.

1. (12 points) Solve the following system by hand using either Gaussian elimination and back substitution *or* Gauss-Jordan elimination. Make sure to clearly mark your solutions and show your work.

$-3x_{1}$	_	$6x_2$	+	x_3	+	$13x_4$	=	-12
x_1	+	$2x_2$			_	$3x_4$	=	5
$-x_1$	_	$2x_2$	+	$2x_3$	+	$11x_{4}$	=	1
$2x_1$	+	$4x_2$	+	x_3	_	$2x_4$	=	13

2. (4 points each) Determine the solution x for each system Ax = b where the following matrices represent the row-echelon form of the augmented matrix [A|b].

(a)	0	1	-1	3	2]
	0	0	1	4	-5
	0	0	0	1	0
	0	0	0	0	$\begin{bmatrix} 2\\ -5\\ 0\\ 0 \end{bmatrix}$

(b)
$$\begin{bmatrix} 1 & -2 & 3 & 0 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3. (12 points) Find the values of k for which the following system does not have a unique solution. $(k-1)\pi - k = 2\pi - 2$

4. (12 points) Find the numbers x and y such that $A^T B = C$ where

$$A = \begin{bmatrix} 2 & y \\ x & 0 \\ y & y \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 \\ x & 1 \\ 1 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & -8 \\ -12 & -6 \end{bmatrix}$$

5. Given the matrix

$$A = \left[\begin{array}{rrrr} 1 & 0 & 1 \\ 3 & 3 & 4 \\ 2 & 2 & 3 \end{array} \right]$$

(a) (12 points) Find A^{-1} if it exists.

(b) (4 points) Let

$$b = \begin{bmatrix} 2\\ -1\\ 0 \end{bmatrix}.$$

Use A^{-1} from part (a) to find the solution to Ax = b.

6. (12 points) Find |A| for the matrix using cofactor expansion

$$A = \begin{bmatrix} 0 & -1 & 2 \\ 2 & -4 & 3 \\ 2 & 1 & 0 \end{bmatrix}$$

7. (6 points) Prove that if A is symmetric and nonsingular, then A^{-1} is symmetric. (Hint: Recall that a matrix B is symmetric if $B^T = B$.) 8. (12 points) Find the eigenvalues and corresponding eigenvectors for the matrix

$$A = \left[\begin{array}{cc} 1 & 0 \\ 2 & -3 \end{array} \right]$$

9. (1 point each) Suppose that A, B, C, D, and E are matrices with the following sizes:

 $A: (4x1) \quad B: (4x8) \quad C: (8x2) \quad D: (1x2) \quad E: (1x4)$

Determine whether the given matrix expression is defined. For those that are defined, give the size of the resulting matrix.

- (a) *EA* _____
- (b) 2A + C _____
- (c) $C^T (EB)^T + D^T$ _____
- 10. (1 point each) For the each of the following, determine if the statement is true or false for general matrices A and B.
 - (a) A homogeneous system (i.e., a system in which the right hand side, b, equals 0) always has a solution.
 - (b) If AB = AC, then B = C.
 - (c) $(A^T)^T = A$ only if A is symmetric.
 - (d) $(AB)^{-1} = B^{-1}A^{-1}$.
 - (e) There is always a solution to the system Ax = b.
 - (f) |4A| = 4|A| for all 4x4 matrices A.
 - (g) If A is an invertible $n \times n$ matrix, then $|A^T| = |A^{-1}|$.
 - (h) If A is an invertible $n \ge n$ matrix, then $|A^T| = \frac{1}{|A^{-1}|}$.
 - (i) If A is a 6x4 matrix and B is a mxn matrix such that B^TA^T is a 2x6 matrix, then m must equal 2 and n must equal 4.