MATH 2010

Test \# 2
March 27, 2012

Name:
You must show all work to receive full credit. No work = no credit!! Parts of questions will not necessarily be weighted equally.

1. (10 points) Determine whether the set of all ordered triplets of real numbers with the operations

$$
[x, y, z] \oplus\left[x^{\prime}, y^{\prime}, z^{\prime}\right]=\left[x+x^{\prime}, y+y^{\prime}, z+z^{\prime}\right]
$$

and

$$
c \odot[x, y, z]=[c x, y, c z]
$$

is a vector space. Show all supporting work for credit. If V is a vector space, you must show all properties are satisfied. If V is not a vector space, you need to only correctly show one property that fails.
Recall, a vector space V must satisfy the following properties:
(A) If \mathbf{u} and \mathbf{v} are any elements of V, then $\mathbf{u} \oplus \mathbf{v}$ is in V.
(A1) $\mathbf{u} \oplus \mathbf{v}=\mathbf{v} \oplus \mathbf{u}$, for \mathbf{u} and \mathbf{v} in V.
(A2) $\mathbf{u} \oplus(\mathbf{v} \oplus \mathbf{w})=(\mathbf{u} \oplus \mathbf{v}) \oplus \mathbf{w}$, for \mathbf{u}, \mathbf{v} and \mathbf{w} in V.
(A3) There is an element $\mathbf{0}$ in V such that $\mathbf{u} \oplus \mathbf{0}=\mathbf{0} \oplus \mathbf{u}=\mathbf{u}$ for all \mathbf{u} in V.
(A4) For each \mathbf{u} in V, there is an element $-\mathbf{u}$ in V such that $\mathbf{u} \oplus-\mathbf{u}=\mathbf{0}$.
(S) If \mathbf{u} is any element in V and c is any real number, then $c \odot \mathbf{u}$ is in V.
(S1) $c \odot(\mathbf{u} \oplus \mathbf{v})=c \odot \mathbf{u} \oplus c \odot \mathbf{v}$ for all real numbers c and all \mathbf{u} and \mathbf{v} in V.
(S2) $(c+d) \odot \mathbf{u}=c \odot \mathbf{u} \oplus d \odot \mathbf{u}$ for all real numbers c and d and all \mathbf{u} in V.
$(\mathrm{S} 3) c \odot(d \odot \mathbf{u})=(c d) \odot \mathbf{u}$ for all real numbers c and d and all \mathbf{u} in V.
(S4) $1 \odot \mathbf{u}=\mathbf{u}$ for all \mathbf{u} in V.
2. (10 points) Consider the subset W in R^{2} where $W=\left\{[x, y]: y=a x^{2}\right\}$ with standard operations:

$$
[x, y] \oplus\left[x^{\prime}, y^{\prime}\right]=\left[x+x^{\prime}, y+y^{\prime}\right]
$$

and

$$
c \odot[x, y]=[c x, c y]
$$

Is W a subspace of R^{2} ? Show all supporting work for credit.
3. (10 points) Determine whether the set $S=\{[0,1,-2,0],[1,0,0,8],[1,-1,0,0],[0,1,0,-4],[1,-1,0,0]\}$ spans R^{4}.
4. (10 points) Determine if the set

$$
S=\left\{\left[\begin{array}{rr}
2 & -4 \\
3 & 1
\end{array}\right],\left[\begin{array}{rr}
1 & -2 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & -2 \\
3 & -1
\end{array}\right]\right\}
$$

is linearly independent or dependent.
5. (10 points) Find all values of t for which the set $S=\{[t, t, t],[t, 1,0],[t, 0,1]\}$ is linearly independent.
6. (a) (2 points) State the requirements for a set S to be a basis for a vector space V.
(b) (10 points) Determine if the set $S=\left\{1-t, 2 t+3 t^{2}, t^{2}-2 t^{3}, 2+t^{3}\right\}$ is a basis for P_{3}. Explain how what you did shows that S is or is not a basis for P_{3}, i.e., explain how what you did shows that S satisfies or does not satisfy all the requirements stated in part (a).
7. Given

$$
A=\left[\begin{array}{rrrrrr}
1 & 0 & 2 & 0 & 0 & 2 \\
2 & -1 & 1 & -2 & 1 & 2 \\
1 & 0 & 2 & 0 & 1 & -2 \\
-2 & 3 & 5 & 6 & -2 & 0 \\
1 & -1 & -1 & -2 & 1 & 0
\end{array}\right]
$$

and its row echelon form

$$
B=\left[\begin{array}{rrrrrr}
1 & -1 & -1 & -2 & 1 & 0 \\
0 & 1 & 3 & 2 & -1 & 2 \\
0 & 0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) (1 point) What is the rank of A ?
(b) (4 points) Find a basis for the column space of A.
(c) (4 points) Find a basis for the row space of A.
(d) (5 point) Find a basis for the nullspace of A.
(e) (1 point) What is the nullity of A ?
8. (5 points) Find a subset of the vectors $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}, \mathbf{v}_{6}\right\}$ that forms a basis for the space spanned by S where

$$
\begin{aligned}
& \mathbf{v}_{1}=[1,2,1,-2,1], \mathbf{v}_{2}=[0,-1,0,3,-1], \mathbf{v}_{3}=[2,1,2,5,-1], \\
& \mathbf{v}_{4}=[0,-2,0,6,-2], \mathbf{v}_{5}=[0,1,1,-2,1], \mathbf{v}_{6}=[2,2,-2,0,0] .
\end{aligned}
$$

Below are two matrices A and a corresponding row echelon form B. Some of this information may be useful in solving this problem.

$$
\begin{aligned}
& \text { - } A=\left[\begin{array}{rrrrr}
1 & 2 & 1 & -2 & 1 \\
0 & -1 & 0 & 3 & -1 \\
2 & 1 & 2 & 5 & -1 \\
0 & -2 & 0 & 6 & -2 \\
0 & 1 & 1 & -2 & 1 \\
2 & 2 & -2 & 0 & 0
\end{array}\right], B=\left[\begin{array}{rrrrr}
1 & 2 & 1 & -2 & 1 \\
0 & 1 & 0 & -3 & 1 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \text { - } A=\left[\begin{array}{rrrrrr}
1 & 0 & 2 & 0 & 0 & 2 \\
2 & -1 & 1 & -2 & 1 & 2 \\
1 & 0 & 2 & 0 & 1 & -2 \\
-2 & 3 & 5 & 6 & -2 & 0 \\
1 & -1 & -1 & -2 & 1 & 0
\end{array}\right], B=\left[\begin{array}{rrrrrr}
1 & -1 & -1 & -2 & 1 & 0 \\
0 & 1 & 3 & 2 & -1 & 2 \\
0 & 0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

9. (a) (3 points) Determine the tail of the vector $\mathbf{u}=[-1,-3]$ whose head is at $(0,2)$.
(b) (4 points) Sketch the vector from part (a) in both the original position and the standard position.
10. (2 points each) Which of the following vectors are scalar multiples of $\mathbf{u}=\left[\frac{1}{2},-\frac{2}{3}, \frac{3}{4}\right]$?
(a) $\mathbf{v}=[6,-4,9]$
(b) $\mathbf{w}=\left[-1, \frac{4}{3},-\frac{3}{2}\right]$
11. (10 points) If possible, write $\mathbf{v}=[2,5,-4]$ as a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}$, and \mathbf{u}_{3} where

$$
\mathbf{u}_{1}=[1,3,2], \quad \mathbf{u}_{2}=[2,-2,-5], \quad \mathbf{u}_{3}=[2,-1,3]
$$

