MATH 2010

Test \# 3
April 19, 2012

Name:
You must show all work to receive full credit. Parts of questions will not necessarily be weighted equally.

1. Let $\mathbf{u}=[1,1,0]$ and $\mathbf{w}=[0,-\sqrt{2}, 0]$.
(a) (6 points) Find a unit vector parallel to \mathbf{u}, having the same direction.
(b) (8 points) Find the angle between \mathbf{u} and \mathbf{w}.
(c) (6 points) Find the value of y such that $[-3, y, 10]$ is perpendicular (orthogonal) to \mathbf{u}.
(d) (8 points) Find all vectors in \Re^{3} that are simultaneously perpendicular (orthogonal) to both \mathbf{u} and \mathbf{w}.
2. (2 points) Find the domain and codomain of the transformation $T_{A}(x)=A x$ where A is a 3 x 5 matrix.
3. (10 points) Determine whether the linear transformation

$$
T(x, y, z)=(x+1,-3 y)
$$

is linear. Show all necessary steps.
4. Given the linear transformation

$$
T\left(\left[v_{1}, v_{2}, v_{3}\right]\right)=\left[-2 v_{1}+4 v_{2},-v_{1}+2 v_{2},-3 v_{3}\right]
$$

(a) (8 points) Find the standard matrix for the operator T.
(b) (8 points) Find the preimage of $\mathbf{w}=[6,3,-3]$ for the transformation.
(c) (8 points) Find a basis for $\operatorname{ker}(T)$.
(d) (8 points) Find a basis for the range of T.
5. Given the linear transformation

$$
T\left(\left[v_{1}, v_{2}\right]\right)=\left[3 v_{1}+6 v_{2},-v_{2}\right]
$$

(a) (2 points) Determine if the transformation is one-to-one.
(b) (8 point) Does an inverse operator exist? If so, find the standard matrix for the inverse operator.
(c) (4 points) Write the inverse linear transformation in the form above, i.e. $T^{-1}\left(\left[w_{1}, w_{2}\right]\right)=[,-]$.
6. Assume A is a $6 x 6$ matrix with characteristic equation given by

$$
\lambda^{2}(\lambda-3)^{3}(\lambda+4)=0
$$

(a) (6 points) List the distinct eigenvalues and give the algebraic multiplicity for each eigenvalue.
(b) (8 points) Given the following cases, determine in each case whether or not A is diagonalizable. If A is diagonalizable, then find a matrix P that diagonalizes A and $P^{-1} A P$ without calculating P^{-1}.

- Case 1: For one of the eigenvalues, there is one associated eigenvector

$$
x_{1}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

For the other eigenvalue, there are three associated eigenvectors given by

$$
x_{2}=\left[\begin{array}{r}
2 \\
-3 \\
9 \\
0 \\
0 \\
0
\end{array}\right], x_{3}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
3 \\
0 \\
0
\end{array}\right] x_{4}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
3 \\
0
\end{array}\right]
$$

- Case 2: For one of the eigenvalues, there is one associated eigenvector

$$
x_{1}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

For another eigenvalue, there are two associated eigenvectors given by

$$
x_{2}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right], x_{3}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

For a final eigenvalue, there are three associated eigenvectors

$$
x_{4}=\left[\begin{array}{r}
2 \\
-3 \\
9 \\
0 \\
0 \\
0
\end{array}\right], x_{5}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
3 \\
0 \\
0
\end{array}\right] x_{6}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
3 \\
0
\end{array}\right]
$$

