Span, Linear Independence and Basis Linear Algebra
 MATH 2010

- Span:
- Linear Combination: A vector v in a vector space V is called a linear combination of vectors $u_{1}, u_{2}, \ldots, u_{k}$ in V if there exists scalars $c_{1}, c_{2}, \ldots, c_{k}$ such that v can be written in the form

$$
v=c_{1} u_{1}+c_{2} u_{2}+\ldots+c_{k} u_{k}
$$

- Example: Is $v=[2,1,5]$ is a linear combination of $u_{1}=[1,2,1], u_{2}=[1,0,2], u_{3}=[1,1,0]$.

To determine whether or not v is a linear combination of u_{1}, u_{2}, and u_{3}, it is necessary to determine if there exists scalars c_{1}, c_{2}, and c_{3}, such that

$$
c_{1} u_{1}+c_{2} u_{2}+c_{3} u_{3}=v
$$

In other words, is there a solution to

$$
c_{1}[1,2,1]+c_{2}[1,0,2]+c_{3}[1,1,0]=[2,1,5] ?
$$

Equating corresponding elements, this leads to the system

$$
\begin{aligned}
& c_{1}+c_{2}+c_{3}=2 \\
& \begin{aligned}
2 c_{1}+c_{3} & =1 \\
c_{1}+2 c_{2} & =5
\end{aligned}
\end{aligned}
$$

Solving the system, we have

$$
\begin{aligned}
{\left[\begin{array}{lll:l}
1 & 1 & 1 & 2 \\
2 & 0 & 1 & 1 \\
1 & 2 & 0 & 1 \\
5
\end{array}\right] } & \rightarrow\left[\begin{array}{rrr|r}
1 & 1 & 1 & 2 \\
0 & -2 & -1 & -3 \\
0 & 1 & -1 & 3
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrr|r}
1 & 0 & 2 & -1 \\
0 & 1 & -1 & 3 \\
0 & 0 & -3 & 3
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrr|r}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & -1
\end{array}\right]
\end{aligned}
$$

- Span: The vectors $v_{1}, v_{2}, \ldots, v_{k}$ in a vector space V are said to span V if every vector in V is a linear combination of $v_{1}, v_{2}, \ldots, v_{k}$. If $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$, then we say that S spans V or V is spanned by S.
- Procedure: To determine if S spans V :

1. Choose an arbitray vector v in V.
2. Determine if v is a linear combination of the given vectors in S.

* If it is, then S spans V.
* If it is not, then S does not span V.
- Example: Let V be the vector space \Re^{3} and let

$$
v_{1}=[1,2,1] \quad v_{2}=[1,0,2] \quad v_{3}=[1,1,0]
$$

Does $S=\left\{v_{1}, v_{2}, v_{2}\right\}$ span V ?

1. Let $v=[x, y, z]$ be an arbitrary vector in $V=\Re^{3}$.
2. Are there constants c_{1}, c_{2} and c_{3} such that

$$
c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=v
$$

for all $v=(x, y, z)$? Then

$$
c_{1}[1,2,1]+c_{2}[1,0,2]+c_{3}[1,1,0]=[x, y, z]
$$

results in the system

$$
\begin{array}{r}
c_{1}+c_{2}+c_{3}=x \\
2 c_{1}=c_{3}=y \\
c_{1}+2 c_{2}=z
\end{array}
$$

Solving the system, we have

$$
\begin{aligned}
{\left[\begin{array}{lll:l}
1 & 1 & 1 & x \\
2 & 0 & 1 & y \\
1 & 2 & 0 & z
\end{array}\right] } & \rightarrow\left[\begin{array}{rrr|r}
1 & 1 & 1 & x \\
0 & -2 & -1 & y-2 x \\
0 & 1 & -1 & z-x
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrr|r}
1 & 1 & 1 & x \\
0 & 1 & -1 & \\
0 & 0 & -3 & y-2 x+2(z-x)
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrr|r}
1 & 1 & 1 & x \\
0 & 1 & -1 & 1 / 3(y-2 x+2(z-x))
\end{array}\right]
\end{aligned}
$$

Notice, that for any x, y, and z, there is a solution to the above system! Therefore, for any arbitrary v, we can write

$$
v=c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}
$$

so S spans V. We can also say $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}=\Re^{3}$.

- Example: $v_{1}=[1,0,0], v_{2}=[0,1,0]$ and $v_{3}=[0,0,1]$ trivially span \Re^{3}, because for any vector $v=[x, y, z]$ in \Re^{3}, we can write

$$
[x, y, z]=x[1,0,0]+y[0,1,0]+z[0,0,1]
$$

- Example: Let V be the vector space P_{2}. Let $S=\left\{p_{1}(t), p_{2}(t)\right\}$ where

$$
p_{1}(t)=t^{2}+2 t+1 \quad p_{2}(t)=t^{2}+2
$$

Does S span V ?

1. Let $p(t)=a t^{2}+b t+c$ be any arbitrary polynomial in P_{2}.
2. Does there exist c_{1} and c_{2} such that

$$
p(t)=c_{1} p_{1}(t)+c_{2} p_{2}(t) ?
$$

or

$$
c_{1}\left(t^{2}+2 t+1\right)+c_{2}\left(t^{2}+2\right)=a t^{2}+b t+c
$$

Equating coefficients, we have the system

$$
\begin{aligned}
c_{1}+c_{2} & =a \\
2 c_{1} & \\
c_{1}+2 c_{2} & =c
\end{aligned}
$$

So we have

$$
\left[\begin{array}{ll|l}
1 & 1 & a \\
2 & 0 & b \\
1 & 2 & c
\end{array}\right] \rightarrow\left[\begin{array}{rr|c}
1 & 1 & a \\
0 & -2 & b-2 a \\
0 & 1 & c-a
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
1 & 1 & a \\
0 & 1 & c-a \\
0 & 0 & b-2 a+2(c-a)
\end{array}\right]
$$

There is no solution for EVERY a, b, and c. Therefore, S does not span V.

- Theorem If $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for a vector space V, then every vector in V can be written in one and only one way as a linear combination of vectors in S.
- Example: $S=\{[1,2,3],[0,1,2],[-2,0,1]\}$ is a basis for \Re^{3}. Then for any u in \Re^{3},

$$
u=c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}
$$

has a unique solution for c_{1}, c_{2}, c_{3}.

$$
[a, b, c]=c_{1}[1,2,3]+c_{2}[0,1,2]+c_{3}[-2,0,1]
$$

results in the system

$$
\begin{aligned}
c_{1} & -2 c_{3}
\end{aligned}=a=b=c
$$

or

$$
A c=u
$$

where

$$
A=\left[\begin{array}{rrr}
1 & 0 & -2 \\
2 & 1 & 0 \\
3 & 2 & 1
\end{array}\right]
$$

The unique solution is

$$
c=A^{-1} u
$$

So, if

$$
A^{-1}=\left[\begin{array}{rrr}
-1 & 4 & -2 \\
2 & -7 & 4 \\
-1 & 2 & -1
\end{array}\right]
$$

then

$$
c=A^{-1}\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

which means that

$$
\begin{array}{r}
c_{1}=-a+4 b-2 c \\
c_{2}=2 a-7 b+4 c \\
c_{3}=-a+2 b-c
\end{array}
$$

So, if $u=[1,1,0]$, then

$$
c_{1}=-1+4=3 ; \quad c_{2}=2-7=-5 ; \quad c_{3}=-1+2=1,
$$

so

$$
u=3 v_{1}-5 v_{2}+v_{3}
$$

- Example: The set $S=\left\{1, t, t^{2}\right\}$ spans P_{2} :

$$
a t^{2}+b t+c=c v_{1}+b v_{2}+a v_{3}
$$

- Theorem If $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is a set of vectors in vector spave V, then $\operatorname{span}(S)$ is a subspace of V. Moreover, $\operatorname{span}(S)$ is the smallest subspace of V that contains S.

- Linear Independence

- Definition: The vectors $v_{1}, v_{2}, \ldots, v_{k}$ in a vector space V are said to be linearly independent if the only $c_{1}, c_{2}, \ldots, c_{k}$ that make

$$
c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{k} v_{k}=0
$$

are $c_{1}=c_{2}=\ldots=c_{k}=0$. Otherwise, $v_{1}, v_{2}, \ldots, v_{k}$ are linearly dependent.

- Example: Are the vectors $v_{1}=[1,0,1,2], v_{2}=[0,1,1,2]$ and $v_{3}=[1,1,1,3]$ in \Re^{4} linearly independent or linearly dependent?

Solve

$$
c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=c_{1}[1,0,1,2]+c_{2}[0,1,1,2]+c_{3}[1,1,1,3]=[0,0,0,0] .
$$

This leads to the system

$$
\begin{aligned}
c_{1} & +c_{3}
\end{aligned}=0
$$

We have the system

$$
\left[\begin{array}{lll|l}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
2 & 2 & 3 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll|l}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 2 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & -1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll|l}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The solution is $c_{1}=0, c_{2}=0$, and $c_{3}=0$, thus, v_{1}, v_{2}, and v_{3} are linearly independent.

- Example: Determine if the elements of S in $M_{2,2}$ is linearly independent or linearly dependent where

$$
S=\left\{\left[\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right],\left[\begin{array}{rr}
370 & \\
2 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
2 & 0
\end{array}\right]\right\}
$$

Solve the system

$$
c_{1}\left[\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right]+c_{2}\left[\begin{array}{ll}
3 & 0 \\
2 & 1
\end{array}\right]+c_{3}\left[\begin{array}{ll}
1 & 0 \\
2 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

This leads to the system

$$
\begin{aligned}
2 c_{1}+3 c_{2}+c_{3} & =0 \\
c_{1} & =0 \\
& 2 c_{2}+2 c_{3}
\end{aligned}=0
$$

This leads to $c_{1}=0, c_{2}=0$, and $c_{3}=0$. Therefore, the elements are linearly independent.

- Theorem A set $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}, k \geq 2$, is linearly dependent if and only if at least one of the vectors v_{j} can be written as a linear combination of the other vectors in S.
- Example: Let $v_{1}=[1,2,-1], v_{2}=[1,-2,1], v_{3}=[-3,2,-1]$, and $v_{4}=[2,0,0]$ in \Re^{3}. Is $S=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ linearly dependent or linearly independent?

This leads to the system

$$
\begin{aligned}
c_{1}+c_{2}-3 c_{3}+2 c_{4} & =0 \\
2 c_{1}-2 c_{2} & +2 c_{3} \\
& =0 \\
-c_{1}+c_{2} & -c_{3}
\end{aligned}
$$

The solution is $c_{1}=s, c_{2}=2 s, c_{3}=s$, and $c_{4}=0$ where is a free parameter, so there are an infinite number of solutions. Hence, S is linearly dependent. If we let $s=1$, we can write

$$
v_{1}+2 v_{2}+v_{3}=0
$$

or

$$
v_{3}=-v_{1}-2 v_{2}
$$

is a linearly combination of the other vectors in S.

- Example: Let $p_{1}(t)=t^{2}+t+2, p_{2}(t)=2 t^{2}+t$ and $p_{3}(t)=3 t^{2}+2 t+2$. Is $S=\left\{p_{1}(t), p_{2}(t), p_{3}(t)\right\}$ linearly independent or linearly dependent? Answer: linearly dependent.
- Corollary Two vectors u and v in a vector space V are linearly dependent if and only if one is a scalar mutliple of the other.
- Example: $S=\{[1,2,0],[-2,2,1]\}$. Since $v_{1} \neq c v_{2}, v_{1}$ and v_{2} are linearly independent.
- Example: $S=\{[4,-4,-2],[-2,2,1]\}$. Since $v_{1}=-2 v_{2}, v_{1}$ and v_{2} are linearly dependent.

- Basis

- Definition: The set of vectors $S=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ in a vector space V is called a basis for V if

1. S spans V
2. S is linearly independent

- Standard Basis for $\Re^{2} S=\{[1,0],[0,1]\}$ is a standard basis.

$$
[x, y]=x[1,0]+y[0,1]
$$

so S spans \Re^{2} and

$$
c_{1}[1,0]+c_{2}[0,1]=[0,0]
$$

leads to $c_{1}=c_{2}=0$, so S is linearly independent. Therefore, S is a basis.

- Nonstandard Basis for \Re^{2} :

1. Determine whether $S=\{[1,2],[1,-1]\}$ is a basis for \Re^{2}.
(a) Does S span \Re^{2} ? Let $v=[a, b]$ be a vector in \Re^{2}. Then we want c_{1} and c_{2} such that

$$
c_{1}[1,2]+c_{2}[1,-1]=[a, b]
$$

In other words, we need to solve

$$
\begin{aligned}
c_{1} & +c_{2} \\
2 c_{1} & -c_{2}
\end{aligned}=b
$$

We end up with the row echelon form:

$$
\left[\begin{array}{cc|c}
1 & 1 & a \\
0 & 1 & -1 / 3(b-2 a)
\end{array}\right]
$$

It has a solution for every a and b, so S spans \Re^{2}.
(b) Is S linearly independent? We need to solve

$$
c_{1}[1,2]+c_{2}[1,-1]=[0,0]
$$

Notice, this is the exact same system as above with the right hand side zero, so it reduces to

$$
\left[\begin{array}{ll|l}
1 & 1 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

which has the trivial solution, so it's linearly independent.
Since S spans \Re^{2} and is linearly independent, S is a basis for \Re^{2}.
2. Determine whether $S=\{[-1,2],[1,-2],[2,4]\}$ is a basis for \Re^{2}.
(a) Does S span \Re^{2} ? Let $v=[a, b]$ be a vector in \Re^{2}. Then we want c_{1} and c_{2} such that

$$
c_{1}[-1,2]+c_{2}[1,-2]+c_{3}[1,-2]=[a, b]
$$

In other words, we need to solve

$$
\left[\begin{array}{rrrcc}
-1 & 1 & 2 & \mid a & \\
2 & -2 & 4 & \mid & b
\end{array}\right] \rightarrow\left[\begin{array}{rrr|c}
1 & -1 & -2 & -a \\
0 & 0 & 1 & 1 / 8(b+2 a)
\end{array}\right]
$$

So, S spans \Re^{2} since there is a solution for every vector $[a, b]$.
(b) Is S linearly independent. Again, this is the process of solving the same system as above with zeros on the right hand side to get

$$
\left[\begin{array}{rrr|r}
1 & -1 & -2 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Since there is a free parameter $\left(c_{2}=t\right)$, there is not simply the trivial solution. Therefore, S is NOT linearly independent.
Since S isn't linearly independent, S is NOT a basis for \Re^{2}.

- Theorem If $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for a vector space V, then every set containing more than n vectors is linearly dependent.

Since $S=\{[1,0],[0,1]\}$ is a basis for \Re^{2} and it contains 2 vectors, then we can use the theorem to say that since the previous example had 3 vectors, it was linearly dependent and thus not a basis.

- Theorem If $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for a vector space V, then every set containing less than n vectors does not span V.
- Theorem If a vector space V has one basis with n vectors, then every basis for V has n vectors. n is called the dimension of V and denoted $\operatorname{dim}(V)$.

- Standard Basis for Several Vector Spaces:

* Standard basis for $\Re^{3}: S=\{[1,0,0],[0,1,0],[0,0,1]\}$
* Standard basis for $\Re^{n}: S=\{[1,0, \ldots, 0],[0,1, \ldots, 0],[0, \ldots, 0,1]\}$
* Standard basis for $P_{3}: S=\left\{1, x, x^{2}, x^{3}\right\}$
* Standard basis for $P_{n}: S=\left\{1, x, x^{2}, \ldots, x^{n}\right\}$
* Standard basis for $M_{2,2}: S=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$

- Dimensions:

* $\operatorname{dim}\left(\Re^{3}\right)=3$
* $\operatorname{dim}\left(\Re^{n}\right)=n$
* $\operatorname{dim}\left(P_{3}\right)=4$
* $\operatorname{dim}\left(P_{n}\right)=n+1$
* $\operatorname{dim}\left(M_{2,2}\right)=4$
* $\operatorname{dim}\left(M_{m, n}\right)=m n$
- Note that if we have the correct dimension, then to determine if the vectors in S are a basis, we can look at the determinant of the coefficient matrix to determine if S is a basis. If the determinant doesn't equal 0 , then A is invertible, so we get the trivial solution for the homogeneous problem (and hence it is linearly independent) and a unique solution (hence at least one solution) for every element in the space (and hence it spans).

