Span, Linear Independence and Basis
Linear Algebra
MATH 2010

- Span:
 - **Linear Combination**: A vector \(v \) in a vector space \(V \) is called a *linear combination* of vectors \(u_1, u_2, \ldots, u_k \) in \(V \) if there exists scalars \(c_1, c_2, \ldots, c_k \) such that \(v \) can be written in the form
 \[
 v = c_1 u_1 + c_2 u_2 + \ldots + c_k u_k
 \]
 - **Example**: Is \(v = [2, 1, 5] \) is a linear combination of \(u_1 = [1, 2, 1], \ u_2 = [1, 0, 2], \ u_3 = [1, 1, 0] \).

 To determine whether or not \(v \) is a linear combination of \(u_1, u_2, \) and \(u_3 \), it is necessary to determine if there exists scalars \(c_1, c_2, \) and \(c_3 \), such that
 \[
 c_1 u_1 + c_2 u_2 + c_3 u_3 = v
 \]

 In other words, is there a solution to
 \[
 c_1[1, 2, 1] + c_2[1, 0, 2] + c_3[1, 1, 0] = [2, 1, 5]?
 \]

 Equating corresponding elements, this leads to the system
 \[
 \begin{align*}
 c_1 + c_2 + c_3 &= 2 \\
 2c_1 + c_3 &= 1 \\
 c_1 + 2c_2 &= 5
 \end{align*}
 \]

 Solving the system, we have
 \[
 \begin{bmatrix}
 1 & 1 & 1 & | & 2 \\
 2 & 0 & 1 & | & 1 \\
 1 & 2 & 0 & | & 5
 \end{bmatrix} \rightarrow \begin{bmatrix}
 1 & 1 & 1 & | & 2 \\
 0 & -2 & -1 & | & -3 \\
 0 & 1 & -1 & | & 3
 \end{bmatrix} \\
 \rightarrow \begin{bmatrix}
 1 & 0 & 2 & | & -1 \\
 0 & 1 & -1 & | & 3 \\
 0 & 0 & -3 & | & 3
 \end{bmatrix} \\
 \rightarrow \begin{bmatrix}
 1 & 0 & 0 & | & 1 \\
 0 & 1 & 0 & | & 2 \\
 0 & 0 & 1 & | & -1
 \end{bmatrix}
 \]

- **Span**: The vectors \(v_1, v_2, \ldots, v_k \) in a vector space \(V \) are said to span \(V \) if every vector in \(V \) is a linear combination of \(v_1, v_2, \ldots, v_k \). If \(S = \{v_1, v_2, \ldots, v_k\} \), then we say that \(S \) spans \(V \) or \(V \) is spanned by \(S \).

- **Procedure**: To determine if \(S \) spans \(V \):
 1. Choose an arbitrary vector \(v \) in \(V \).
 2. Determine if \(v \) is a linear combination of the given vectors in \(S \).
 * If it is, then \(S \) spans \(V \).
 * If it is not, then \(S \) does not span \(V \).
Example: Let V be the vector space \mathbb{R}^3 and let
\[v_1 = [1, 2, 1] \quad v_2 = [1, 0, 2] \quad v_3 = [1, 1, 0] \]
Does $S = \{v_1, v_2, v_3\}$ span V?
1. Let $v = [x, y, z]$ be an arbitrary vector in $V = \mathbb{R}^3$.
2. Are there constants c_1, c_2 and c_3 such that
 \[c_1 v_1 + c_2 v_2 + c_3 v_3 = v \]
 for all $v = (x, y, z)$? Then
 \[c_1 [1, 2, 1] + c_2 [1, 0, 2] + c_3 [1, 1, 0] = [x, y, z] \]
results in the system
\[
\begin{align*}
 c_1 + c_2 + c_3 &= x \\
 2c_1 + c_3 &= y \\
 c_1 + 2c_2 &= z
\end{align*}
\]
Solving the system, we have
\[
\begin{bmatrix}
 1 & 1 & 1 & | & x \\
 2 & 0 & 1 & | & y \\
 1 & 2 & 0 & | & z
\end{bmatrix}
\rightarrow
\begin{bmatrix}
 1 & 1 & 1 & | & x \\
 0 & -2 & -2 & | & y - 2x \\
 0 & 1 & -1 & | & z - x
\end{bmatrix}
\rightarrow
\begin{bmatrix}
 1 & 1 & 1 & | & x \\
 0 & 1 & -1 & | & y - 2x + 2(z - x) \\
 0 & 0 & -2 & | & z - x \\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
 1 & 1 & 1 & | & x \\
 0 & 1 & -1 & | & z - x \\
 0 & 0 & 1 & | & 1/3(y - 2x + 2(z - x))
\end{bmatrix}
\]
Notice, that for any x, y, and z, there is a solution to the above system! Therefore, for any arbitrary v, we can write
\[v = c_1 v_1 + c_2 v_2 + c_3 v_3 \]
so S spans V. We can also say $\text{span}\{v_1, v_2, v_3\} = \mathbb{R}^3$.

Example: $v_1 = [1, 0, 0]$, $v_2 = [0, 1, 0]$ and $v_3 = [0, 0, 1]$ trivially span \mathbb{R}^3, because for any vector $v = [x, y, z]$ in \mathbb{R}^3, we can write
\[[x, y, z] = x[1, 0, 0] + y[0, 1, 0] + z[0, 0, 1] \]

Example: Let V be the vector space P_2. Let $S = \{p_1(t), p_2(t)\}$ where
\[p_1(t) = t^2 + 2t + 1 \quad p_2(t) = t^2 + 2 \]
Does S span V?
1. Let $p(t) = at^2 + bt + c$ be any arbitrary polynomial in P_2.
2. Does there exist c_1 and c_2 such that
 \[p(t) = c_1 p_1(t) + c_2 p_2(t) \]
or
 \[c_1 (t^2 + 2t + 1) + c_2 (t^2 + 2) = at^2 + bt + c \]
Equating coefficients, we have the system
\[
\begin{align*}
 c_1 + c_2 &= a \\
 2c_1 &= b \\
 c_1 + 2c_2 &= c
\end{align*}
\]
So we have
\[
\begin{bmatrix}
1 & 1 & a \\
2 & 0 & b \\
1 & 2 & c
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 1 & a \\
0 & -2 & b - 2a \\
0 & 1 & c - a
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 1 & a \\
0 & 1 & c - a \\
0 & 0 & b - 2a + 2(c - a)
\end{bmatrix}
\]

There is no solution for EVERY \(a, b,\) and \(c\). Therefore, \(S\) does not span \(V\).

- **Theorem** If \(S = \{v_1, v_2, \ldots, v_n\}\) is a basis for a vector space \(V\), then every vector in \(V\) can be written in *one and only one* way as a linear combination of vectors in \(S\).

- **Example:** \(S = \{[1, 2, 3], [0, 1, 2], [-2, 0, 1]\}\) is a basis for \(\mathbb{R}^3\). Then for any \(u\) in \(\mathbb{R}^3\),

\[
u = c_1v_1 + c_2v_2 + c_3v_3\]

has a unique solution for \(c_1, c_2, c_3\).

\([a, b, c] = c_1[1, 2, 3] + c_2[0, 1, 2] + c_3[-2, 0, 1]\)

results in the system
\[
\begin{align*}
c_1 & - 2c_3 = a \\
2c_1 + c_2 & = b \\
3c_1 + 2c_2 + c_3 & = c
\end{align*}
\]
or
\[
Ac = u
\]
where
\[
A = \begin{bmatrix}
1 & 0 & -2 \\
2 & 1 & 0 \\
3 & 2 & 1
\end{bmatrix}
\]
The unique solution is
\[
c = A^{-1}u
\]
So, if
\[
A^{-1} = \begin{bmatrix}
-1 & 4 & -2 \\
2 & -7 & 4 \\
-1 & 2 & -1
\end{bmatrix}
\]
then
\[
c = A^{-1} \begin{bmatrix}
a \\
b \\
c
\end{bmatrix}
\]
which means that
\[
\begin{align*}
c_1 &= -a + 4b - 2c \\
c_2 &= 2a - 7b + 4c \\
c_3 &= -a + 2b - c
\end{align*}
\]
So, if \(u = [1, 1, 0]\), then
\[
\begin{align*}
c_1 &= -1 + 4 = 3; \\
c_2 &= 2 - 7 = -5; \\
c_3 &= -1 + 2 = 1,
\end{align*}
\]
so
\[
u = 3v_1 - 5v_2 + v_3
\]

- **Example:** The set \(S = \{1, t, t^2\}\) spans \(P_2\):

\[
at^2 + bt + c = cv_1 + bv_2 + av_3
\]

- **Theorem** If \(S = \{v_1, v_2, \ldots, v_k\}\) is a set of vectors in vector space \(V\), then \(\text{span}(S)\) is a subspace of \(V\). Moreover, \(\text{span}(S)\) is the smallest subspace of \(V\) that contains \(S\).
- **Linear Independence**

 - **Definition:** The vectors \(v_1, v_2, \ldots, v_k \) in a vector space \(V \) are said to be **linearly independent** if the only \(c_1, c_2, \ldots, c_k \) that make

 \[
 c_1 v_1 + c_2 v_2 + \ldots + c_k v_k = 0
 \]

 are \(c_1 = c_2 = \ldots = c_k = 0 \). Otherwise, \(v_1, v_2, \ldots, v_k \) are **linearly dependent**.

 - **Example:** Are the vectors \(v_1 = [1, 0, 1, 2], v_2 = [0, 1, 1, 2] \) and \(v_3 = [1, 1, 1, 3] \) in \(\mathbb{R}^4 \) linearly independent or linearly dependent?

 Solve

 \[
 c_1 v_1 + c_2 v_2 + c_3 v_3 = c_1[1, 0, 1, 2] + c_2[0, 1, 1, 2] + c_3[1, 1, 1, 3] = [0, 0, 0, 0].
 \]

 This leads to the system

 \[
 \begin{align*}
 c_1 + c_3 &= 0 \\
 c_2 + c_3 &= 0 \\
 c_1 + c_2 + c_3 &= 0 \\
 2c_1 + 2c_2 + 3c_3 &= 0
 \end{align*}
 \]

 We have the system

 \[
 \begin{bmatrix}
 1 & 0 & 1 & 0 \\
 0 & 1 & 1 & 0 \\
 1 & 1 & 1 & 0 \\
 2 & 2 & 3 & 0
 \end{bmatrix} \rightarrow \begin{bmatrix}
 1 & 0 & 1 & 0 \\
 0 & 1 & 1 & 0 \\
 0 & 1 & 1 & 0 \\
 0 & 2 & 1 & 0
 \end{bmatrix} \rightarrow \begin{bmatrix}
 1 & 0 & 1 & 0 \\
 0 & 1 & 1 & 0 \\
 0 & 0 & -1 & 0 \\
 0 & 0 & 0 & 0
 \end{bmatrix} \rightarrow \begin{bmatrix}
 1 & 0 & 1 & 0 \\
 0 & 1 & 1 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0
 \end{bmatrix}
 \]

 The solution is \(c_1 = 0, c_2 = 0, \) and \(c_3 = 0 \), thus, \(v_1, v_2, \) and \(v_3 \) are linearly independent.

 - **Example:** Determine if the elements of \(S \) in \(M_{2,2} \) is linearly independent or linearly dependent where

 \[
 S = \left\{ \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 370 & 1 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix} \right\}
 \]

 Solve the system

 \[
 c_1 \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} + c_2 \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix} + c_3 \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix}
 \]

 This leads to the system

 \[
 \begin{align*}
 2c_1 + 3c_2 + c_3 &= 0 \\
 c_1 &= 0 \\
 2c_2 + 2c_3 &= 0 \\
 c_1 &= 0 \\
 c_2 &= 0
 \end{align*}
 \]

 This leads to \(c_1 = 0, c_2 = 0, \) and \(c_3 = 0 \). Therefore, the elements are linearly independent.

 - **Theorem** A set \(S = \{v_1, v_2, \ldots, v_k\} \), \(k \geq 2 \), is linearly dependent if and only if at least one of the vectors \(v_j \) can be written as a linear combination of the other vectors in \(S \).

 - **Example:** Let \(v_1 = [1, 2, -1], v_2 = [1, -2, 1], v_3 = [-3, 2, -1], \) and \(v_4 = [2, 0, 0] \) in \(\mathbb{R}^3 \). Is \(S = \{v_1, v_2, v_3, v_4\} \) linearly dependent or linearly independent?

 This leads to the system

 \[
 \begin{align*}
 c_1 + c_2 - 3c_3 + 2c_4 &= 0 \\
 2c_1 - 2c_2 + 2c_3 &= 0 \\
 -c_1 + c_2 - c_3 &= 0
 \end{align*}
 \]

 The solution is \(c_1 = s, c_2 = 2s, c_3 = s, \) and \(c_4 = 0 \) where \(s \) is a free parameter, so there are an infinite number of solutions. Hence, \(S \) is linearly dependent. If we let \(s = 1 \), we can write

 \[
 v_1 + 2v_2 + v_3 = 0
 \]

 or

 \[
 v_3 = -v_1 - 2v_2
 \]

 is a linear combination of the other vectors in \(S \).
- **Example:** Let \(p_1(t) = t^2 + t + 2, p_2(t) = 2t^2 + t \) and \(p_3(t) = 3t^2 + 2t + 2. \) Is \(S = \{p_1(t), p_2(t), p_3(t)\} \) linearly independent or linearly dependent? Answer: linearly dependent.

- **Corollary** Two vectors \(u \) and \(v \) in a vector space \(V \) are linearly dependent if and only if one is a scalar multiple of the other.

- **Example:** \(S = \{[1, 2, 0], [-2, 2, 1]\}. \) Since \(v_1 \neq cv_2, v_1 \) and \(v_2 \) are linearly independent.

- **Example:** \(S = \{[4, -4, -2], [-2, 2, 1]\}. \) Since \(v_1 = -2v_2, v_1 \) and \(v_2 \) are linearly dependent.

- **Basis**

 - **Definition:** The set of vectors \(S = \{v_1, v_2, v_3, ..., v_n\} \) in a vector space \(V \) is called a **basis** for \(V \) if
 1. \(S \) spans \(V \)
 2. \(S \) is linearly independent

- **Standard Basis for \(\mathbb{R}^2 \)** \(S = \{[1, 0], [0, 1]\} \) is a standard basis.

 - \([x, y] = x[1, 0] + y[0, 1] \)

 - so \(S \) spans \(\mathbb{R}^2 \) and

 \[
 c_1[1, 0] + c_2[0, 1] = [0, 0]
 \]

 - leads to \(c_1 = c_2 = 0 \), so \(S \) is linearly independent. Therefore, \(S \) is a basis.

- **Nonstandard Basis for \(\mathbb{R}^2 \):**
 1. Determine whether \(S = \{[1, 2], [1, -1]\} \) is a basis for \(\mathbb{R}^2 \).
 (a) Does \(S \) span \(\mathbb{R}^2 \)? Let \(v = [a, b] \) be a vector in \(\mathbb{R}^2 \). Then we want \(c_1 \) and \(c_2 \) such that

 \[
 c_1[1, 2] + c_2[1, -1] = [a, b]
 \]

 - In other words, we need to solve

 \[
 \begin{align*}
 c_1 + c_2 &= a \\
 2c_1 - c_2 &= b
 \end{align*}
 \]

 - We end up with the row echelon form:

 \[
 \begin{bmatrix}
 1 & 1 & | & a \\
 0 & 1 & | & -1/3(b - 2a)
 \end{bmatrix}
 \]

 - It has a solution for every \(a \) and \(b \), so \(S \) spans \(\mathbb{R}^2 \).

 (b) Is \(S \) linearly independent? We need to solve

 \[
 c_1[1, 2] + c_2[1, -1] = [0, 0]
 \]

 - Notice, this is the exact same system as above with the right hand side zero, so it reduces to

 \[
 \begin{bmatrix}
 1 & 1 & | & 0 \\
 0 & 1 & | & 0
 \end{bmatrix}
 \]

 - which has the trivial solution, so it’s linearly independent.

 Since \(S \) spans \(\mathbb{R}^2 \) and is linearly independent, \(S \) is a basis for \(\mathbb{R}^2 \).

 2. Determine whether \(S = \{[-1, 2], [1, -2], [2, 4]\} \) is a basis for \(\mathbb{R}^2 \).

 (a) Does \(S \) span \(\mathbb{R}^2 \)? Let \(v = [a, b] \) be a vector in \(\mathbb{R}^2 \). Then we want \(c_1 \) and \(c_2 \) such that

 \[
 c_1[-1, 2] + c_2[1, -2] + c_3[1, -2] = [a, b]
 \]

 - In other words, we need to solve

 \[
 \begin{bmatrix}
 -1 & 1 & 2 & | & a \\
 2 & -2 & 4 & | & b
 \end{bmatrix} \rightarrow \begin{bmatrix}
 1 & -1 & -2 & | & -a \\
 0 & 0 & 1 & | & 1/8(b + 2a)
 \end{bmatrix}
 \]

 - So, \(S \) spans \(\mathbb{R}^2 \) since there is a solution for every vector \([a, b]\).
(b) Is S linearly independent. Again, this is the process of solving the same system as above with zeros on the right hand side to get

$$
\begin{bmatrix}
1 & -1 & -2 & | & 0 \\
0 & 0 & 1 & | & 0
\end{bmatrix}
$$

Since there is a free parameter ($c_2 = t$), there is not simply the trivial solution. Therefore, S is NOT linearly independent.

Since S isn’t linearly independent, S is NOT a basis for \mathbb{R}^2.

- **Theorem** If $S = \{v_1, v_2, \ldots, v_n\}$ is a basis for a vector space V, then every set containing more than n vectors is linearly dependent.

Since $S = \{[1,0],[0,1]\}$ is a basis for \mathbb{R}^2 and it contains 2 vectors, then we can use the theorem to say that since the previous example had 3 vectors, it was linearly dependent and thus not a basis.

- **Theorem** If $S = \{v_1, v_2, \ldots, v_n\}$ is a basis for a vector space V, then every set containing less than n vectors does not span V.

- **Theorem** If a vector space V has one basis with n vectors, then every basis for V has n vectors. n is called the *dimension* of V and denoted $\dim(V)$.

- **Standard Basis for Several Vector Spaces:**
 - Standard basis for \mathbb{R}^3: $S = \{[1,0,0],[0,1,0],[0,0,1]\}$
 - Standard basis for \mathbb{R}^n: $S = \{[1,0,\ldots,0],[0,1,\ldots,0],[0,\ldots,0,1]\}$
 - Standard basis for P_3: $S = \{1,x,x^2,x^3\}$
 - Standard basis for P_n: $S = \{1,x,x^2,\ldots,x^n\}$
 - Standard basis for $M_{2,2}$: $S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$

- **Dimensions:**
 - $\dim(\mathbb{R}^3) = 3$
 - $\dim(\mathbb{R}^n) = n$
 - $\dim(P_3) = 4$
 - $\dim(P_n) = n + 1$
 - $\dim(M_{2,2}) = 4$
 - $\dim(M_{m,n}) = mn$

- Note that if we have the correct dimension, then to determine if the vectors in S are a basis, we can look at the determinant of the coefficient matrix to determine if S is a basis. If the determinant doesn’t equal 0, then A is invertible, so we get the trivial solution for the homogeneous problem (and hence it is linearly independent) and a unique solution (hence at least one solution) for every element in the space (and hence it spans).