Span, Linear Independence and Basis Linear Algebra MATH 2010

• Span:

- Linear Combination: A vector v in a vector space V is called a *linear combination* of vectors $u_1, u_2, ..., u_k$ in V if there exists scalars $c_1, c_2, ..., c_k$ such that v can be written in the form

$$v = c_1 u_1 + c_2 u_2 + \dots + c_k u_k$$

- **Example:** Is v = [2, 1, 5] is a linear combination of $u_1 = [1, 2, 1]$, $u_2 = [1, 0, 2]$, $u_3 = [1, 1, 0]$.

To determine whether or not v is a linear combination of u_1 , u_2 , and u_3 , it is necessary to determine if there exists scalars c_1 , c_2 , and c_3 , such that

$$c_1 u_1 + c_2 u_2 + c_3 u_3 = v$$

In other words, is there a solution to

$$c_1[1,2,1] + c_2[1,0,2] + c_3[1,1,0] = [2,1,5]?$$

Equating corresponding elements, this leads to the system

Solving the system, we have

$$\begin{bmatrix} 1 & 1 & 1 & | & 2 \\ 2 & 0 & 1 & | & 1 \\ 1 & 2 & 0 & | & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & | & 2 \\ 0 & -2 & -1 & | & -3 \\ 0 & 1 & -1 & | & 3 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 0 & 2 & | & -1 \\ 0 & 1 & -1 & | & 3 \\ 0 & 0 & -3 & | & 3 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & -1 \end{bmatrix}$$

- Span: The vectors $v_1, v_2, ..., v_k$ in a vector space V are said to span V if every vector in V is a linear combination of $v_1, v_2, ..., v_k$. If $S = \{v_1, v_2, ..., v_k\}$, then we say that S spans V or V is spanned by S.
- **Procedure:** To determine if S spans V:
 - 1. Choose an *arbitray* vector v in V.
 - 2. Determine if v is a linear combination of the given vectors in S.
 - $\ast\,$ If it is, then S spans V.
 - * If it is not, then S does not span V.

- **Example:** Let V be the vector space \Re^3 and let

$$v_1 = [1, 2, 1]$$
 $v_2 = [1, 0, 2]$ $v_3 = [1, 1, 0]$

Does $S = \{v_1, v_2, v_2\}$ span V?

- 1. Let v = [x, y, z] be an arbitrary vector in $V = \Re^3$.
- 2. Are there constants c_1 , c_2 and c_3 such that

$$c_1v_1 + c_2v_2 + c_3v_3 = v$$

for all v = (x, y, z)? Then

$$c_1[1,2,1] + c_2[1,0,2] + c_3[1,1,0] = [x,y,z]$$

results in the system

Solving the system, we have

$$\begin{bmatrix} 1 & 1 & 1 & | & x \\ 2 & 0 & 1 & | & y \\ 1 & 2 & 0 & | & z \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & | & x \\ 0 & -2 & -1 & | & y - 2x \\ 0 & 1 & -1 & | & z - x \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 1 & 1 & | & x \\ 0 & 1 & -1 & | & z - x \\ 0 & 0 & -3 & | & y - 2x + 2(z - x) \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 1 & 1 & | & x \\ 0 & 1 & -1 & | & z - x \\ 0 & 0 & 1 & | & 1/3(y - 2x + 2(z - x)) \end{bmatrix}$$

Notice, that for any x, y, and z, there is a solution to the above system! Therefore, for any arbitrary v, we can write

$$v = c_1 v_1 + c_2 v_2 + c_3 v_3$$

so S spans V. We can also say $span\{v_1, v_2, v_3\} = \Re^3$.

- **Example:** $v_1 = [1, 0, 0], v_2 = [0, 1, 0]$ and $v_3 = [0, 0, 1]$ trivially span \Re^3 , because for any vector v = [x, y, z] in \Re^3 , we can write

$$[x, y, z] = x[1, 0, 0] + y[0, 1, 0] + z[0, 0, 1]$$

- **Example:** Let V be the vector space P_2 . Let $S = \{p_1(t), p_2(t)\}$ where

$$p_1(t) = t^2 + 2t + 1$$
 $p_2(t) = t^2 + 2$

Does S span V?

- 1. Let $p(t) = at^2 + bt + c$ be any arbitrary polynomial in P_2 .
- 2. Does there exist c_1 and c_2 such that

$$p(t) = c_1 p_1(t) + c_2 p_2(t)?$$

or

$$c_1(t^2 + 2t + 1) + c_2(t^2 + 2) = at^2 + bt + c$$

Equating coefficients, we have the system

So we have

$$\begin{bmatrix} 1 & 1 & | & a \\ 2 & 0 & | & b \\ 1 & 2 & | & c \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & | & a \\ 0 & -2 & | & b - 2a \\ 0 & 1 & | & c - a \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & | & a \\ 0 & 1 & | & c - a \\ 0 & 0 & | & b - 2a + 2(c - a) \end{bmatrix}$$

There is no solution for EVERY a, b, and c. Therefore, S does not span V.

- Theorem If $S = \{v_1, v_2, ..., v_n\}$ is a basis for a vector space V, then every vector in V can be written in one and only one way as a linear combination of vectors in S.
- **Example:** $S = \{[1, 2, 3], [0, 1, 2], [-2, 0, 1]\}$ is a basis for \Re^3 . Then for any u in \Re^3 ,

 c_1

$$u = c_1 v_1 + c_2 v_2 + c_3 v_3$$

has a unique solution for c_1, c_2, c_3 .

$$[a, b, c] = c_1[1, 2, 3] + c_2[0, 1, 2] + c_3[-2, 0, 1]$$

 $- 2c_3 = a$

c

results in the system

or

where

$$A = \left[\begin{array}{rrr} 1 & 0 & -2 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{array} \right]$$

 $c = A^{-1}u$

Ac = u

The unique solution is

So, if

$$A^{-1} = \begin{bmatrix} -1 & 4 & -2\\ 2 & -7 & 4\\ -1 & 2 & -1 \end{bmatrix}$$

then

$$c = A^{-1} \left[\begin{array}{c} a \\ b \\ c \end{array} \right]$$

which means that

So, if u = [1, 1, 0], then

$$c_1 = -1 + 4 = 3; \ c_2 = 2 - 7 = -5; \ c_3 = -1 + 2 = 1,$$

 \mathbf{SO}

$$u = 3v_1 - 5v_2 + v_3$$

- **Example:** The set $S = \{1, t, t^2\}$ spans P_2 :

$$at^{2} + bt + c = cv_{1} + bv_{2} + av_{3}$$

- Theorem If $S = \{v_1, v_2, ..., v_k\}$ is a set of vectors in vector spave V, then span(S) is a subspace of V. Moreover, $\operatorname{span}(S)$ is the smallest subspace of V that contains S.

• Linear Independence

- Definition: The vectors $v_1, v_2, ..., v_k$ in a vector space V are said to be linearly independent if the only $c_1, c_2, ..., c_k$ that make

$$c_1v_1 + c_2v_2 + \dots + c_kv_k = 0$$

are $c_1 = c_2 = ... = c_k = 0$. Otherwise, $v_1, v_2, ..., v_k$ are **linearly dependent**.

- **Example:** Are the vectors $v_1 = [1, 0, 1, 2]$, $v_2 = [0, 1, 1, 2]$ and $v_3 = [1, 1, 1, 3]$ in \Re^4 linearly independent or linearly dependent?

Solve

$$c_1v_1 + c_2v_2 + c_3v_3 = c_1[1, 0, 1, 2] + c_2[0, 1, 1, 2] + c_3[1, 1, 1, 3] = [0, 0, 0, 0]$$

This leads to the system

$$c_1 + c_3 = 0 c_2 + c_3 = 0 c_1 + c_2 + c_3 = 0 2c_1 + 2c_2 + 3c_3 = 0$$

We have the system

[1	0	1	0		1	0	1	0 -		1	0	1	0	[1	0	1	0]
	0	1	1	0	\rightarrow	0	1	1	0	\rightarrow	0	1	1	0	$\rightarrow \left[\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \end{array} \right]$	0	1	1	0	
	1	1	1	0		0	1	0	0		0	0	-1	0		0	0	1	0	
	2	2	3	0		0	2	1	0 _		0	0	-1	0		0	0	0	0	

The solution is $c_1 = 0$, $c_2 = 0$, and $c_3 = 0$, thus, v_1 , v_2 , and v_3 are linearly independent.

- **Example:** Determine if the elements of S in $M_{2,2}$ is linearly independent or linearly dependent where

$$S = \left\{ \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 370 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix} \right\}$$

Solve the system

$$c_1 \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} + c_2 \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix} + c_3 \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

This leads to the system

$2c_1$	+	$3c_2$	+	c_3	=	0
c_1					=	0
		$2c_2$	+	$2c_3$	=	0
c_1	+	c_2			=	0

This leads to $c_1 = 0$, $c_2 = 0$, and $c_3 = 0$. Therefore, the elements are linearly independent.

- **Theorem** A set $S = \{v_1, v_2, ..., v_k\}, k \ge 2$, is linearly dependent if and only if at least one of the vectors v_j can be written as a linear combination of the other vectors in S.
- **Example:** Let $v_1 = [1, 2, -1]$, $v_2 = [1, -2, 1]$, $v_3 = [-3, 2, -1]$, and $v_4 = [2, 0, 0]$ in \Re^3 . Is $S = \{v_1, v_2, v_3, v_4\}$ linearly dependent or linearly independent?

This leads to the system

c_1	+	c_2	—	$3c_3$	+	$2c_4$	=	0
$2c_1$	—	$2c_2$	+	$2c_3$			=	0
$-c_1$	+	c_2	_	c_3			=	0

The solution is $c_1 = s$, $c_2 = 2s$, $c_3 = s$, and $c_4 = 0$ where is a free parameter, so there are an infinite number of solutions. Hence, S is linearly dependent. If we let s = 1, we can write

$$v_1 + 2v_2 + v_3 = 0$$

or

$$v_3 = -v_1 - 2v_2$$

is a linearly combination of the other vectors in S.

- **Example:** Let $p_1(t) = t^2 + t + 2$, $p_2(t) = 2t^2 + t$ and $p_3(t) = 3t^2 + 2t + 2$. Is $S = \{p_1(t), p_2(t), p_3(t)\}$ linearly independent or linearly dependent? Answer: linearly dependent.
- Corollary Two vectors u and v in a vector space V are linearly dependent if and only if one is a scalar multiple of the other.
- **Example:** $S = \{[1, 2, 0], [-2, 2, 1]\}$. Since $v_1 \neq cv_2, v_1$ and v_2 are linearly independent.
- **Example:** $S = \{[4, -4, -2], [-2, 2, 1]\}$. Since $v_1 = -2v_2$, v_1 and v_2 are linearly dependent.

• Basis

- **Definition:** The set of vectors $S = \{v_1, v_2, v_3, ..., v_n\}$ in a vector space V is called a **basis** for V if
 - 1. S spans V
 - 2. S is linearly independent
- Standard Basis for $\Re^2 S = \{[1,0], [0,1]\}$ is a standard basis.

$$[x, y] = x[1, 0] + y[0, 1]$$

so S spans \Re^2 and

$$c_1[1,0] + c_2[0,1] = [0,0]$$

leads to $c_1 = c_2 = 0$, so S is linearly independent. Therefore, S is a basis.

– Nonstandard Basis for \Re^2 :

- 1. Determine whether $S = \{[1, 2], [1, -1]\}$ is a basis for \Re^2 .
 - (a) Does S span \Re^2 ? Let v = [a, b] be a vector in \Re^2 . Then we want c_1 and c_2 such that

$$c_1[1,2] + c_2[1,-1] = [a,b]$$

In other words, we need to solve

We end up with the row echelon form:

$$\left[\begin{array}{cccc} 1 & 1 & | & a \\ 0 & 1 & | & -1/3(b-2a) \end{array} \right]$$

- It has a solution for every a and b, so S spans \Re^2 .
- (b) Is S linearly independent? We need to solve

$$c_1[1,2] + c_2[1,-1] = [0,0]$$

Notice, this is the exact same system as above with the right hand side zero, so it reduces to

$$\begin{bmatrix} 1 & 1 & | & 0 \\ 0 & 1 & | & 0 \end{bmatrix}$$

which has the trivial solution, so it's linearly independent.

- Since S spans \Re^2 and is linearly independent, S is a basis for \Re^2 .
- 2. Determine whether $S = \{[-1, 2], [1, -2], [2, 4]\}$ is a basis for \Re^2 .
 - (a) Does S span \Re^2 ? Let v = [a, b] be a vector in \Re^2 . Then we want c_1 and c_2 such that

$$c_1[-1,2] + c_2[1,-2] + c_3[1,-2] = [a,b]$$

In other words, we need to solve

$$\begin{bmatrix} -1 & 1 & 2 & |a \\ 2 & -2 & 4 & | & b \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & -2 & | & -a \\ 0 & 0 & 1 & | & 1/8(b+2a) \end{bmatrix}$$

So, S spans \Re^2 since there is a solution for every vector [a, b].

(b) Is S linearly independent. Again, this is the process of solving the same system as above with zeros on the right hand side to get

Since there is a free parameter $(c_2 = t)$, there is not simply the trivial solution. Therefore, S is NOT linearly independent.

Since S isn't linearly independent, S is NOT a basis for \Re^2 .

- **Theorem** If $S = \{v_1, v_2, ..., v_n\}$ is a basis for a vector space V, then every set containing more than n vectors is linearly dependent.

Since $S = \{[1, 0], [0, 1]\}$ is a basis for \Re^2 and it contains 2 vectors, then we can use the theorem to say that since the previous example had 3 vectors, it was linearly dependent and thus not a basis.

- **Theorem** If $S = \{v_1, v_2, ..., v_n\}$ is a basis for a vector space V, then every set containing less than n vectors does not span V.
- **Theorem** If a vector space V has one basis with n vectors, then every basis for V has n vectors. n is called the *dimension* of V and denoted $\dim(V)$.
- Standard Basis for Several Vector Spaces:
 - * Standard basis for \Re^3 : $S = \{[1, 0, 0], [0, 1, 0], [0, 0, 1]\}$
 - * Standard basis for $\Re^n:\, S=\{[1,0,...,0],[0,1,...,0],[0,...,0,1]\}$
 - * Standard basis for P_3 : $S = \{1, x, x^2, x^3\}$
 - * Standard basis for P_n : $S = \{1, x, x^2, ..., x^n\}$
 - * Standard basis for $M_{2,2}$: $S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$

- Dimensions:

- $* \dim(\Re^3) = 3$
- $* \dim(\Re^n) = n$
- $* \dim(P_3) = 4$
- $* \dim(P_n) = n+1$
- $* \dim(M_{2,2}) = 4$
- $* \dim(M_{m,n}) = mn$
- Note that if we have the correct dimension, then to determine if the vectors in S are a basis, we can look at the determinant of the coefficient matrix to determine if S is a basis. If the determinant doesn't equal 0, then A is invertible, so we get the trivial solution for the homogeneous problem (and hence it is linearly independent) and a unique solution (hence at least one solution) for every element in the space (and hence it spans).