Subspaces
 Linear Algebra MATH 2010

- Definition of Subspace: Let V be a vector space and W be a nonempty subset of V. If W is a vector space with respect to the operations in V, then W is a subspace of V.
- Example: Every vector space has at least two subspaces:

1. itself
2. the zero subspace consisting of just $\{0\}$, the zero element.

- Theorem: Let V be a vector space with operations \oplus and \odot and let W be a nonempty subst of V. Then W is a subspace of V if and only if the following conditions hold:
A) If u and v are any elements of V then $u \oplus v$ is in V. (V is said to be closed under the operation \oplus.
S) If u is any element of V and c is any real number, then $c \odot u$ is in V. (V is said to be closed under the operation \odot.)

Note that all the other properties are satisfied for W, since every element in W is an element of V and thus satisfies [A1]-[A4] and [S1]-[S4].

- Example: Let W be a subset of \Re^{3} consisting of vectors of the form ($a, 0, b$) with usual vector addition and scalar multiplication. (I.e., the second component must equal 0 .) Is W a subspace of V ? To determine whether or not W is a subspace, you must determine whether or not it is closed under addition ([A]) and closed under scalar multiplication ([S]).
A) Need to show if u and v are any elements of W then $u \oplus v$ is in W. (W is closed under addition.) Let $u=(x, 0, z)$ and $v=\left(x^{\prime}, 0, z^{\prime}\right)$ be two vectors in W. (Note: this is the required form to be in $W)$. Then

$$
u \oplus v=(x, 0, z) \oplus\left(x^{\prime}, 0, z^{\prime}\right)=(x, 0, z)+\left(x^{\prime}, 0, z^{\prime}\right)=\left(x+x^{\prime}, 0+0, z+z^{\prime}\right)=\left(x+x^{\prime}, 0, z+z^{\prime}\right)
$$

by using the standard definition of addition for \Re^{3}. Since $\left(x+x^{\prime}, 0, z+z^{\prime}\right)$ has a second component of 0 , it has the right form and is in W. So, property A is satisfied!
S) If u is any element of W and c is any real number, then $c \odot u$ is in W. (W is closed under scalar multiplication.)
Let $u=(x, 0, z)$ be in W. Then

$$
c \odot u=c(x, 0, z)=(c x, c(0), c z)=(c x, 0, c z)
$$

by using the standard definition of scalar multiplication. Since $(c x, 0, c z)$ has a second component of 0 , it has the right form and is in W. So, property \mathbf{S} is satisfied!

Since W is closed under addition and scalar multiplication, W is said to be a subspace of \Re^{3}.

- Example: Let W be a subset of \Re^{3} consisting of vectors of the form $(a, 1, b)$ with usual vector addition and scalar multiplication. (I.e., the second component must equal 1.) Is W a subspace of V ? To determine whether or not W is a subspace, you must determine whether or not it is closed under addition ([A]) and closed under scalar multiplication ([S]).
A) Need to show if u and v are any elements of W then $u \oplus v$ is in W. (W is closed under addition.)

Let $u=(x, 1, z)$ and $v=\left(x^{\prime}, 1, z^{\prime}\right)$ be two vectors in W. (Note: this is the required form to be in $W)$. Then

$$
u \oplus v=(x, 1, z) \oplus\left(x^{\prime}, 1, z^{\prime}\right)=(x, 1, z)+\left(x^{\prime}, 1, z^{\prime}\right)=\left(x+x^{\prime}, 1+1, z+z^{\prime}\right)=\left(x+x^{\prime}, 2, z+z^{\prime}\right)
$$

by using the standard definition of addition for \Re^{3}. Since $\left(x+x^{\prime}, 2, z+z^{\prime}\right)$ does not have a second component of 1 , it is not in W. So, property \mathbf{A} is not satisfied!

Since W is not closed under addition, we do not need to go any further. W is not a subspace.

- Example: Let W be the set of all $2 x 3$ matrices of the form

$$
\left[\begin{array}{lll}
a & b & 0 \\
0 & c & d
\end{array}\right]
$$

where a, b, c, and d are arbitrary real numbers. Show W is a subspace of M_{23} if \oplus and \odot are the standard matrix addition and scalar multiplication.
A) Let

$$
u=\left[\begin{array}{ccc}
a_{1} & b_{1} & 0 \\
0 & c_{1} & d_{1}
\end{array}\right] \text { and } v=\left[\begin{array}{ccc}
a_{2} & b_{2} & 0 \\
0 & c_{2} & d_{2}
\end{array}\right]
$$

be two elements in W. (Note: this is the required form to be in W). Then

$$
\begin{aligned}
u \oplus v & =\left[\begin{array}{ccc}
a_{1} & b_{1} & 0 \\
0 & c_{1} & d_{1}
\end{array}\right] \oplus\left[\begin{array}{ccc}
a_{2} & b_{2} & 0 \\
0 & c_{2} & d_{2}
\end{array}\right]=\left[\begin{array}{ccc}
a_{1} & b_{1} & 0 \\
0 & c_{1} & d_{1}
\end{array}\right]+\left[\begin{array}{ccc}
a_{2} & b_{2} & 0 \\
0 & c_{2} & d_{2}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
a_{1}+a_{2} & b_{1}+b_{2} & 0+0 \\
0+0 & c_{1}+c_{2} & d_{1}+d_{2}
\end{array}\right]=\left[\begin{array}{ccc}
a_{1}+a_{2} & b_{1}+b_{2} & 0 \\
0 & c_{1}+c_{2} & d_{1}+d_{2}
\end{array}\right]
\end{aligned}
$$

by using the standard definition of addition for M_{23}. Since $u \oplus v$ has the right form, it is in W. So, property A is satisfied!
S) Let

$$
u=\left[\begin{array}{ccc}
a_{1} & b_{1} & 0 \\
0 & c_{1} & d_{1}
\end{array}\right]
$$

be in W. Then

$$
k \odot u=k \odot\left[\begin{array}{ccc}
a_{1} & b_{1} & 0 \\
0 & c_{1} & d_{1}
\end{array}\right]=k\left[\begin{array}{ccc}
a_{1} & b_{1} & 0 \\
0 & c_{1} & d_{1}
\end{array}\right]=\left[\begin{array}{ccc}
k a_{1} & k b_{1} & k(0) \\
k(0) & k c_{1} & k d_{1}
\end{array}\right]=\left[\begin{array}{ccc}
k a_{1} & k b_{1} & 0 \\
0 & k c_{1} & k d_{1}
\end{array}\right]
$$

by using the standard definition of scalar multiplication. Since $k \odot u$ has the right form, it is in W. So, property \mathbf{S} is satisfied!

Since W is closed under addition and scalar multiplication, W is said to be a subspace of M_{23}.

- Example: Consider the homogeneous system $A x=0$ where A is a $m \mathrm{x} n$ matrix and x in \Re^{n} is a solution vector. Let W be the subset of \Re^{n} that consists of all solutions to this homogeneous system. Determine whether or not W is a subspace of \Re^{n} where \oplus and \odot are the standard vector addition and scalar multiplication in \Re^{n}. (In other words, if x is an element of W, then it satisfies $A x=0$.)
A) Let x and y be elements of W, then $A x=0$ and $A y=0$ since this is the requirement to be in W. To prove [A], we must determine whether or not $x \oplus y$ is in W. Since we are using standard addition, $x \oplus y=x+y$. To determine whether or not $x+y$ is in W, we must determine if $A(x+y)=0$ (the requirement to be in W).

$$
\begin{aligned}
A(x+y) & =A x+A y & & \text { by distributing property of matrix multiplication } \\
& =0+0 & & \text { since } x \text { and } y \text { are in } W, A x=0 \text { and } A y=0 \\
& =0 & & \text { addition of zero vectors }
\end{aligned}
$$

Therefore, $A(x+y)=0$, so $x+y$ is in W. Thus, W is closed under addition.
S) Let x be in W and c be a scalar. Since x is in $W, A x=0$ (requirement of elements in W). We need to show $c x$ is also in W, i.e., we need to show $A(c x)=0$

$$
\begin{aligned}
A(c x) & =c(A x) & & \text { property of matrix multiplication } \\
& =c(0) & & \text { since } x \text { is in } W, A x=0 \\
& =0 & & \text { property of zero vector }
\end{aligned}
$$

So, $A(c x)=0$; therefore, $c x$ is in W. Hence, W is closed under scalar multiplication.
Since W is closed under both addition and scalar multiplication, W is a subspace of \Re^{n}.

- Example: Which of the following are subspaces of \Re^{2} with normal addition and scalar multiplication.

1. The set of points (x, y) in \Re^{2} which lie on the line $x+2 y=0$.
2. The set of points (x, y) in \Re^{2} which lie on the line $x+2 y=1$.

- If W is a subset of \Re^{2}, then it is a subspace of \Re^{2} if and only if one of the three possibilities is true:

1. W consists of just $(0,0)$.
2. W consists of all points on a line that pass through the origin.
3. W consists of all of \Re^{2}.

- Example: Which of the following subsets of \Re^{3} is a subspace of \Re^{3} with normal addition and scalar multiplication?

1. $W=\left\{\left(x_{1}, x_{2}, 1\right) ; x_{1}\right.$ and x_{2} are real numbers $\}$
2. $W=\left\{\left(x_{1}, x_{1}+x_{3}, x_{3}\right) ; x_{1}\right.$ and x_{3} are real numbers $\}$
