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• Euclidean Spaces: First, we will look at what is meant by the different Euclidean Spaces.

– Euclidean 1-space <1: The set of all real numbers, i.e., the real line. For example, 1, 1
2 , -2.45 are

all elements of <1.

– Euclidean 2-space <2: The collection of ordered pairs of real numbers, (x1, x2), is denoted <2.
Euclidean 2-space is also called the plane. For example, (0,−1) and (5, 1

2 ) are elements of <2.

– Euclidean 3-space <3: The collection of all ordered triplets, (x1, x2, x3), of real numbers is denoted
<3. Euclidean 3-space is also called space. For example, (−1, 2, 4) is in <3.

– Although it is harder to visualize, we can extend the notation above, to the set of all ordered
n-tuples, (x1, x2, ..., xn). This space is called Euclidean n-space and is denoted <n.

• Introduction to Vectors: Vectors are used in many disciplines such as physics and engineering.
Let’s first consider vectors in <2.

– Definition: Vectors are directed line segments that have both a magnitude and a direction.

∗ The length of the vector denotes the magnitude. For example in Physics, the length of the
vector will denote the amount of force on an object.

∗ The direction of the vector is denoted by the arrow at the terminal point. In Physics, the
arrow will denote the direction of the force.

∗ Below is the vector pointing to the point (2,3).



– Position: Typically the tail of the vector is at the origin, as in the figure above. This is called
standard position. However, sometimes, the vector has a tail not at the origin. For example,
consider the vector v = ~PQ where P is the point (x1, y1), and Q is the point (x2, y2) in <2. The
figure shows the vector v in its standard position as well as v translated to P . The standard
position of v is represented by

v = [x2 − x1, y2 − y1]
the coordinates are given by the head point (Q) minus the tail point (P ).

– Terminology:

∗ If x = [x1, x2, ..., xn], then xi is called the ith component of x relative to the coordinate
system.

∗ 0 = [0, 0, ..., 0] is called the zero vector.
∗ Two vectors v = [v1, v2, ..., vn] and w = [w1, w2, ..., wm] are equal is n = m (same length) and
vi = wi for all i (all components are equal).

– Notation: A point in <n is denoted by the ordered pair (x1, x2, ..., xn); however, depending on
the context, this notation can also be used to represent a vector. For example (2, 3) is a point in
<2 or a vector in <2 depending on the context. The different notations for vectors are as follows
s

∗ (x1, x2, ...., xn) is the comma-delimited form of a vector
∗ [x1, x2, ..., xn] is the bracketed comma-delimited form of vector. For example, [2, 3].
∗ A bold letter: v = [x1, x2] represents a vector.
∗ A letter with an arrow over top: ~v also represents a vector.
∗ A vector can also be considered a row-matrix:[

x1 x2 . . . xn
]

∗ A vector can also be written as a column matrix
x1

x2

...
xn





• Manipulation of Vectors

– Addition of vectors: Consider two vectors v and w. We want to find v + w.

∗ Geometrically (see the figure below), we can translate w to the head of v, denoted as
translated w. Then the resulting vector found with tail at the origin and head at the terminal
point of translated w is v + w.

Alternatively, you can also view the sum of v and w as the diagonal of the parallelogram
found by translating both v and w as shown in the figure below.

∗ Numerically you just add the components of the vectors. If u = [1, 2] and v = [3,−4], then

u + v = [1 + 3, 2 + (−4)] = [4,−2].

∗ Zero vector addition: 0 + v = v.

– Negative of v: The negative of v is denoted −v and is a vector of the same length as v in the
oppposite direction of v.



If v = [v1, v2, ..., vn], then −v = [−v1,−v2, ...,−vn], and

v + (−v) = 0

Example: If v = [3, 2,−1], then −v is given as −v = [−3,−2, 1].

– Subtraction of Vectors:

∗ Geometrically, there are a couple of different ways to think about v − w. We can first
find −w, and then look at the addition of v and −w as we did above, either using the just
translated vector of −w or the parallelogram formed by v and −w (see below)

Alternatively, you can also view the v −w as the off-diagonal of the original parallelogram
formed by v and w. This gives the vector v−w in a translated position where we can simply
find the standard position by placing the initial point at the origin.

∗ Numerically you just subtract the components of the vectors. If u = [1, 3,−4] and v =
[2, 0,−1], then

u− v = [1− 2, 3− 0,−4− (−1)] = [−1, 3,−3].

– Parallel Vectors:

∗ Two vectors v and w are parallel if one vector is a scalar multiple of the other, i.e.,

v = kw

· If k > 0, then the vectors are in the same direction.
· If k < 0, then the vectors are in opposite directions.
· If 0 < |k| < 1, the length (force) is decreased.



· If |k| > 1, the length (force) is increased
∗ The notation is: v||w.
∗ An example is shown for v = [2, 3]

– Sample Problems

1. Given u = [−2, 3, 1] and w = [−3,−2,−1], find 1
2 (3u + w). Ans: [− 9

2 ,
7
2 , 1]

2. Find all scalars c, if any exist, such that [c2,−4]||[1,−2]. Ans: c = ±
√

2.

• Properties of Vector Algebra in <n: Let u, v, and w be any vectors in <n and let r and s be any
scalars in <.

– Properties of Vector Addition

A1) (u + v) + w = u + (v + w) Associative Law
A2) v + w = w + v Commutative Law
A3) 0 + v = v Additive Identity of 0
A4) v +−v = 0 Additive Inverse of v

– Properties Involving Scalar Multiplication

S1) r(v + w) = rv + rw Distributive Law
S2) (r + s)v = rv + sv Distributive Law
S3) r(sv) = (rs)v Associative Law
S4) 1v = v Preservation of Scale



– Additional Properties

1. 0v = 0
2. r0 = 0
3. (−1)u = −u

• Norm of a vector The length of a vector, also called the norm of a vector is denoted ||x|| and given
by

||x|| =
√
x2

1 + x2
2 + ...+ x2

n

– Example: Let x = [2, 3, 1, 0], then

||x|| =
√

22 + 32 + 11 + 02 =
√

4 + 9 + 1 =
√

14

– Properties of norm If x is a vector in <n, and if r is any scalar, then

1. ||x|| ≥ 0
2. ||x|| = 0 if and only if x = 0
3. ||rx|| = |r|||x||

• Unit vector: A vector with length 1 is called a unit vector. If x is any vector in <n, then

u =
1
||x||

x

is a unit vector in the direction of x

For example, for the vector above, x = [2, 3, 1, 0], we found that ||x|| =
√

14. Therefore, the vector

u =
1√
14

[2, 3, 1, 0] =
[

2√
14
,

3√
14
,

1√
14
, 0
]

=

[
2
√

14
14

,
3
√

14
14

,

√
14

14
, 0

]
is a unit vector in the direction of x

• Standard unit vectors: The standard unit vectors are the vectors of length 1 along the coordinate
axis. The picture below shows the standard unit vectors in <2.

– Standard unit vectors in <2: The standard unit vectors in <2 are given by

î = [1, 0] ĵ = [0, 1]

– Standard unit vectors in <3: The standard unit vectors in <2 are given by

î = [1, 0, 0] ĵ = [0, 1, 0] ĵ = [0, 0, 1]

– Standard unit vectors in <n: In general, the standard unit vectors in <n are given by

e1 = [1, 0, 0, . . . , 0, 0] e2 = [0, 1, 0, . . . , 0, 0] · · · en = [0, 0, 0, . . . , 0, 1]

where ei has a 1 in the ith components and all the other components are 0.



– Every vector in <n can be written a a linear combination of the standard unit vectors

x = [x1, x2, ..., xn] = x1[1, 0, 0, . . . , 0, 0]+x2[0, 1, 0, . . . , 0, 0]+· · ·+xn[0, 0, 0, . . . , 0, 1] = x1e1+x2e2+· · ·+xnen

– Examples:

1. x = −1[1, 0, 0, 0] + 3[0, 1, 0, 0] + 4[0, 0, 1, 0]− 2[0, 0, 0, 1] = −1e1 + 3e2 + 4e3 − 2e4

2. x = [2,−1, 5] = 2[1, 0, 0]− 1[0, 1, 0] + 5[0, 0, 1] = 2̂i− ĵ + 5k̂

• Distance between two vectors: Let u = [u1, u2, ..., un] and v = [v1, v2, ..., vn] be two vectors in <n,
then the distance between the two vectors is given by the formula:

d(u,v) = ||u− v|| =
√

(u1 − v1)2 + (u2 − v2)2 + ...+ (un − vn)2

– Example: Let u = [2, 5] and v = [−1, 0], then

d(u,v) =
√

(2− (−1))2 + (5− 0)2 =
√

9 + 25 =
√

34

– Properties: If u and v are vectors in <n, then

1. d(u,v) ≥ 0
2. d(u,v) = 0 if and only if u = v
3. d(u,v) = d(v,u

• Angle between two vectors: We are interested in finding the angle between two given vectors are
pictured in the schematic below:

In order to do this, we need the Law of Cosines.

If we have the schematic above, then the Law of Cosines is given by

c2 = a2 + b2 − 2ab cos θ

Using the law of cosines with our vector schematic, we have

||u− v||2 = ||u||2 + ||v||2 − 2||u||||v|| cos (θ)



Let’s consider u = [u1, u2] and v = [v1, v2] in <2. Then

||u− v||2 = (u1 − v1)2 + (u2 − v2)2

= u2
1 − 2u1v1 + v2

1 + u2
2 − 2u2v2 + v2

2

= u2
1 + u2

2 + v2
1 + v2

2)− 2(u1v1 + u2v2)
= ||u||2 + ||v||2 − 2(u1v1 + u2v2)

Combining this with
||u− v||2 = ||u||2 + ||v||2 − 2||u||||v|| cos (θ)

we have
||u||2 + ||v||2 − 2(u1v1 + u2v2) = ||u||2 + ||v||2 − 2||u||||v|| cos (θ)

The ||u||2 + ||v||2 cancels out leaving

−2(u1v1 + u2v2) = −2||u||||v|| cos (θ)

Solving for cos (θ), we have

cos (θ) =
u1v1 + u2v2
||u||||v||

The numerator is defined as the dot product between u and v. Let’s examine the dot product.
Afterwards, we will continue looking at the angle between two vectors.

• Dot Product The dot product between two vectors u and v in <n is denoted u · v and is defined by

u · v = u1v1 + u2v2 + · · ·unvn

Therefore, in <2, the dot product is simply

u · v = u1v1 + u2v2

– Examples

1. Let u = [1, 2] and v = [−1, 3], then

u · v = 1(−1) + 2(3) = −1 + 6 = 5

2. Let u = [1,−2, 3, 4] and v = [2, 3,−2, 1], then

u · v = 1(2) + (−2)(3) + 3(−2) + 4(1) = 2− 6− 6 + 4 = −6

– Properties of the Dot Product: Let u,v, and w be vectors in <n and c be a scalar in <. Then

1. u · v = v · u
2. u · (v + w) = u · v + u ·w
3. c(u · v) = (cu) · v = u · (cv)
4. v · v = v1v1 + v2 + v2 = ||v||2

5. v · v ≥ 0 and v · v = 0 if and only if v = 0



– Examples: For the given u and v, find

a) u · v
b) u · u
c) ||u||2

d) (u · v)v
e) u · (5v)

1. u = [−1, 2], v = [2,−2]
2. u = [2,−1, 1], v = [0, 2,−1]

Answers

1. a) u · v = −6
b) u · u = 5
c) ||u||2 = 5
d) (u · v)v = [−12, 12]
e) u · (5v) = −30

2. a) u · v = −3
b) u · u = 6
c) ||u||2 = 6
d) (u · v)v = [0,−6, 3]
e) u · (5v) = −15

– Example: Find
(3u− v) · (u− 3v)

given that
u · u = 8 u · v = 7 v · v = 6

Solution:
(3u− v) · (u− 3v) = 3u · u− 3u · (3v)− v · u + v · (3v)

= 3u · u− 9u · v − u · v + 3v · v
= 3(8)− 9(7)− 7 + 3(6)
= −26

• Back to the angle between vectors: The angle θ between vectors u and v is given by

cos (θ) =
u · v
||u||||v||

, 0 ≤ θ ≤ π

– Example: Let u = [1, 0, 0, 1] and v = [0, 1, 0, 1]. Find the angle between u and v

cos (θ) =
u · v
||u||||v||

=
1 · 0 + 0 · 1 + 0 · 0 + 1 · 1√

12 + 12
√

12 + 12
=

1
2

So,
θ =

π

3
radians or 60◦

– Theorem If u and v are nonzero and θ is the angle between them, then

∗ θ is acute if and only if u · v > 0
∗ θ is obtuse if and only if u · v < 0

– Example: Let u = [1,−1, 0, 1] and v = [−1, 2,−1, 0]. Find the angle between u and v.

u · v = −1− 2 = −3, ||u|| =
√

3, v =
√

6

so

cos (θ) =
−3√
3
√

6
= −
√

3√
6

= −
√

2
2

Then,

θ =
3π
4



– Example: Let u = [2, 3, 1] and v = [−3, 2, 0]. Then u · v = −6 + 6 + 0 = 0. Then

cos (θ) =
0

||u||||v||
= 0

So, θ = π
2 or 90◦.

– Orthogonal: If cos θ = 0, i.e. θ = π
2 , then u and v are said to be orthogonal (or perpendicular).

Therefore, two vectors u and v are orthogonal if

u · v = 0

– Examples:

1. Determine all vectors orthogonal to u = [2, 7]. Ans: All vectors v = t[−7/2, 1] where t is any
real number.

2. Determine all vectors orthogonal to u = [2,−1, 1]. Ans: All vectors v = [1/2(s−t), s, t] where
s and t are any real number.

• Projections: Sometimes it is necessary to decompose a vector into a combination of two vectors which
are orthogonal to one another. A trivial case is decomposing a vector u = [u1, u2] in <2 into its î and
ĵ directions, i.e., u = u1î+ u2ĵ. However, sometimes it is necessary to decompose it along a direction
different than the standard coordinate directions. Say, we need to decompose a vector into components
along a vector a, say w1 and along a vector, w2, on an axis orthogonal to a. See the image below.

– In the above figure w1 is called the orthogonal projection of u on a or the vector component of u
along a and is given by

w1 = projau =
u · a
||a||2

a (vector component of u along a)

– w2 is called the vector component of u orthogonal to a and is given by

w2 = u− projau = u− u · a
||a||2

a

– Example: Let u = [2,−1, 3] and a = [4,−1, 2]. Find the vector component of u along a and the
vector component of u orthogonal to a.

∗ vector component of u along a:

u · a = 2(4) + (−1)(−1) + 3(2) = 15

and
||a||2 = 42 + (−1)2 + 22 = 21

Then

projau =
u · a
||a||2

a =
15
21

[4,−1, 2] =
[

20
7
,−5

7
,

10
7

]



∗ vector component of u orthogonal to a:

u− projau = [2,−1, 3]−
[

20
7
,−5

7
,

10
7

]
=
[
−6

7
,−2

7
,

11
7

]
– Formula for the length of the projection of u along a.

||projau|| =
∣∣∣∣∣∣ u·a
||a||2 a

∣∣∣∣∣∣
=

∣∣∣ u·a
||a||2

∣∣∣ ||a||
= |u·a|

||a||2 ||a||
= frac|u · a|||a||
= ||u||| cos (θ)|


