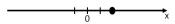
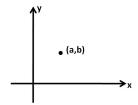
Vectors in Euclidean Space

Linear Algebra MATH 2010

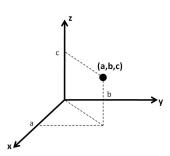
- Euclidean Spaces: First, we will look at what is meant by the different Euclidean Spaces.
 - Euclidean 1-space \Re^1 : The set of all real numbers, i.e., the real line. For example, 1, $\frac{1}{2}$, -2.45 are all elements of \Re^1 .



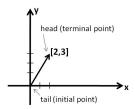
- Euclidean 2-space \Re^2 : The collection of ordered pairs of real numbers, (x_1, x_2) , is denoted \Re^2 . Euclidean 2-space is also called *the plane*. For example, (0, -1) and $(5, \frac{1}{2})$ are elements of \Re^2 .



- Euclidean 3-space \Re^3 : The collection of all ordered triplets, (x_1, x_2, x_3) , of real numbers is denoted \Re^3 . Euclidean 3-space is also called *space*. For example, (-1, 2, 4) is in \Re^3 .

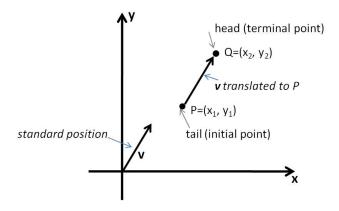


- Although it is harder to visualize, we can extend the notation above, to the set of all ordered n-tuples, $(x_1, x_2, ..., x_n)$. This space is called Euclidean n-space and is denoted \Re^n .
- Introduction to Vectors: Vectors are used in many disciplines such as physics and engineering. Let's first consider vectors in \Re^2 .
 - **Definition:** Vectors are *directed* line segments that have both a magnitude and a direction.
 - * The length of the vector denotes the magnitude. For example in Physics, the length of the vector will denote the amount of force on an object.
 - * The *direction* of the vector is denoted by the arrow at the terminal point. In Physics, the arrow will denote the direction of the force.
 - * Below is the vector pointing to the point (2,3).



- **Position:** Typically the tail of the vector is at the origin, as in the figure above. This is called standard position. However, sometimes, the vector has a tail not at the origin. For example, consider the vector $\mathbf{v} = PQ$ where P is the point (x_1, y_1) , and Q is the point (x_2, y_2) in \Re^2 . The figure shows the vector \mathbf{v} in its standard position as well as \mathbf{v} translated to P. The standard position of \mathbf{v} is represented by

$$\mathbf{v} = [x_2 - x_1, y_2 - y_1]$$
 the coordinates are given by the head point (Q) minus the tail point (P) .



- Terminology:

- * If $\mathbf{x} = [x_1, x_2, ..., x_n]$, then x_i is called the i^{th} component of \mathbf{x} relative to the coordinate system.
- * $\mathbf{0} = [0, 0, ..., 0]$ is called the zero vector.
- * Two vectors $\mathbf{v} = [v_1, v_2, ..., v_n]$ and $\mathbf{w} = [w_1, w_2, ..., w_m]$ are equal is n = m (same length) and $v_i = w_i$ for all i (all components are equal).
- **Notation:** A point in \Re^n is denoted by the ordered pair $(x_1, x_2, ..., x_n)$; however, depending on the context, this notation can also be used to represent a vector. For example (2,3) is a point in \Re^2 or a vector in \Re^2 depending on the context. The different notations for vectors are as follows
 - * $(x_1, x_2, ..., x_n)$ is the comma-delimited form of a vector
 - * $[x_1, x_2, ..., x_n]$ is the bracketed comma-delimited form of vector. For example, [2, 3].
 - * A bold letter: $\mathbf{v} = [x_1, x_2]$ represents a vector.
 - * A letter with an arrow over top: \vec{v} also represents a vector.
 - * A vector can also be considered a row-matrix:

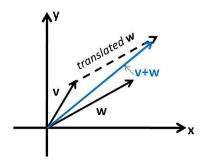
$$\left[\begin{array}{cccc} x_1 & x_2 & \dots & x_n \end{array}\right]$$

* A vector can also be written as a column matrix

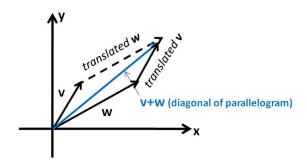
$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

• Manipulation of Vectors

- Addition of vectors: Consider two vectors \mathbf{v} and \mathbf{w} . We want to find $\mathbf{v} + \mathbf{w}$.
 - * **Geometrically** (see the figure below), we can translate \mathbf{w} to the head of \mathbf{v} , denoted as translated \mathbf{w} . Then the resulting vector found with tail at the origin and head at the terminal point of translated \mathbf{w} is $\mathbf{v} + \mathbf{w}$.



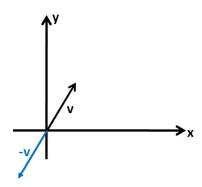
Alternatively, you can also view the sum of \mathbf{v} and \mathbf{w} as the diagonal of the parallelogram found by translating both \mathbf{v} and \mathbf{w} as shown in the figure below.



* Numerically you just add the components of the vectors. If $\mathbf{u} = [1, 2]$ and $\mathbf{v} = [3, -4]$, then

$$\mathbf{u} + \mathbf{v} = [1+3, 2+(-4)] = [4, -2].$$

- * Zero vector addition: 0 + v = v.
- **Negative of v:** The negative of \mathbf{v} is denoted $-\mathbf{v}$ and is a vector of the same length as \mathbf{v} in the oppposite direction of \mathbf{v} .



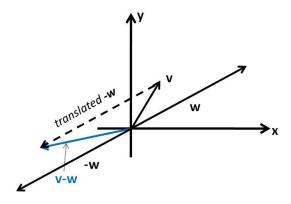
If
$$\mathbf{v} = [v_1, v_2, ..., v_n]$$
, then $-\mathbf{v} = [-v_1, -v_2, ..., -v_n]$, and

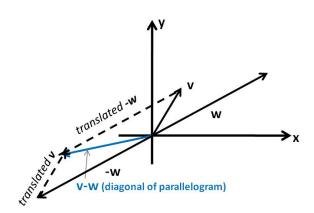
$$\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$$

Example: If $\mathbf{v} = [3, 2, -1]$, then $-\mathbf{v}$ is given as $-\mathbf{v} = [-3, -2, 1]$.

- Subtraction of Vectors:

* **Geometrically**, there are a couple of different ways to think about $\mathbf{v} - \mathbf{w}$. We can first find $-\mathbf{w}$, and then look at the addition of \mathbf{v} and $-\mathbf{w}$ as we did above, either using the just translated vector of $-\mathbf{w}$ or the parallelogram formed by \mathbf{v} and $-\mathbf{w}$ (see below)





Alternatively, you can also view the $\mathbf{v} - \mathbf{w}$ as the *off-diagonal* of the original parallelogram formed by \mathbf{v} and \mathbf{w} . This gives the vector $\mathbf{v} - \mathbf{w}$ in a translated position where we can simply find the standard position by placing the initial point at the origin.

* Numerically you just subtract the components of the vectors. If $\mathbf{u} = [1, 3, -4]$ and $\mathbf{v} = [2, 0, -1]$, then

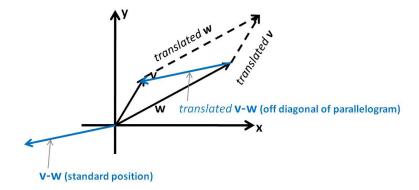
$$\mathbf{u} - \mathbf{v} = [1 - 2, 3 - 0, -4 - (-1)] = [-1, 3, -3].$$

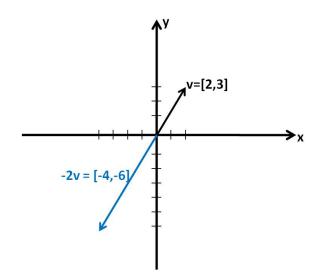
- Parallel Vectors:

* Two vectors **v** and **w** are parallel if one vector is a scalar multiple of the other, i.e.,

$$\mathbf{v} = k\mathbf{w}$$

- · If k > 0, then the vectors are in the same direction.
- · If k < 0, then the vectors are in opposite directions.
- · If 0 < |k| < 1, the length (force) is decreased.





- · If |k| > 1, the length (force) is increased
- * The notation is: $\mathbf{v}||\mathbf{w}$.
- * An example is shown for $\mathbf{v} = [2, 3]$

- Sample Problems

- 1. Given $\mathbf{u} = [-2, 3, 1]$ and $\mathbf{w} = [-3, -2, -1]$, find $\frac{1}{2}(3\mathbf{u} + \mathbf{w})$. Ans: $[-\frac{9}{2}, \frac{7}{2}, 1]$
- 2. Find all scalars c, if any exist, such that $[c^2, -4]||[1, -2]|$. Ans: $c = \pm \sqrt{2}$.
- Properties of Vector Algebra in \Re^n : Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be any vectors in \Re^n and let r and s be any scalars in \Re .

- Properties of Vector Addition

- A1) $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ Associative Law
- A2) $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$ Commutative Law
- A3) $\mathbf{0} + \mathbf{v} = \mathbf{v}$ Additive Identity of $\mathbf{0}$
- A4) $\mathbf{v} + -\mathbf{v} = \mathbf{0}$ Additive Inverse of \mathbf{v}

- Properties Involving Scalar Multiplication

- S1) $r(\mathbf{v} + \mathbf{w}) = r\mathbf{v} + r\mathbf{w}$ Distributive Law
- S2) $(r+s)\mathbf{v} = r\mathbf{v} + s\mathbf{v}$ Distributive Law
- S3) $r(s\mathbf{v}) = (rs)\mathbf{v}$ Associative Law
- S4) $1\mathbf{v} = \mathbf{v}$ Preservation of Scale

- Additional Properties
 - 1. $0\mathbf{v} = \mathbf{0}$
 - 2. r**0** = **0**
 - 3. $(-1)\mathbf{u} = -\mathbf{u}$
- Norm of a vector The *length* of a vector, also called the *norm* of a vector is denoted $||\mathbf{x}||$ and given by

$$||\mathbf{x}|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

- Example: Let $\mathbf{x} = [2, 3, 1, 0]$, then

$$||\mathbf{x}|| = \sqrt{2^2 + 3^2 + 1^1 + 0^2} = \sqrt{4 + 9 + 1} = \sqrt{14}$$

- Properties of norm If x is a vector in \Re^n , and if r is any scalar, then
 - 1. $||\mathbf{x}|| \ge 0$
 - 2. $||\mathbf{x}|| = 0$ if and only if $\mathbf{x} = \mathbf{0}$
 - 3. $||r\mathbf{x}|| = |r|||\mathbf{x}||$
- Unit vector: A vector with length 1 is called a *unit vector*. If \mathbf{x} is any vector in \Re^n , then

$$\mathbf{u} = \frac{1}{||\mathbf{x}||} \mathbf{x}$$

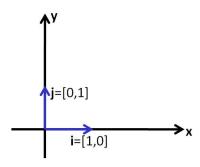
is a unit vector in the direction of \mathbf{x}

For example, for the vector above, $\mathbf{x} = [2, 3, 1, 0]$, we found that $||\mathbf{x}|| = \sqrt{14}$. Therefore, the vector

$$\mathbf{u} = \frac{1}{\sqrt{14}}[2, 3, 1, 0] = \left[\frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}, \frac{1}{\sqrt{14}}, 0\right] = \left[\frac{2\sqrt{14}}{14}, \frac{3\sqrt{14}}{14}, \frac{\sqrt{14}}{14}, 0\right]$$

is a unit vector in the direction of ${\bf x}$

• Standard unit vectors: The standard unit vectors are the vectors of length 1 along the coordinate axis. The picture below shows the standard unit vectors in \Re^2 .



- Standard unit vectors in \Re^2 : The standard unit vectors in \Re^2 are given by

$$\hat{i} = [1, 0]$$
 $\hat{j} = [0, 1]$

- Standard unit vectors in \Re^3 : The standard unit vectors in \Re^2 are given by

$$\hat{i} = [1, 0, 0]$$
 $\hat{j} = [0, 1, 0]$ $\hat{j} = [0, 0, 1]$

- Standard unit vectors in \mathbb{R}^n : In general, the standard unit vectors in \mathbb{R}^n are given by

$$\mathbf{e}_1 = [1, 0, 0, \dots, 0, 0] \ \mathbf{e}_2 = [0, 1, 0, \dots, 0, 0] \ \cdots \ \mathbf{e}_n = [0, 0, 0, \dots, 0, 1]$$

where \mathbf{e}_i has a 1 in the i^{th} components and all the other components are 0.

- Every vector in \Re^n can be written a a linear combination of the standard unit vectors

$$\mathbf{x} = [x_1, x_2, ..., x_n] = x_1[1, 0, 0, ..., 0, 0] + x_2[0, 1, 0, ..., 0, 0] + \dots + x_n[0, 0, 0, ..., 0, 1] = x_1\mathbf{e}_1 + x_2\mathbf{e}_2 + \dots + x_n\mathbf{e}_n$$

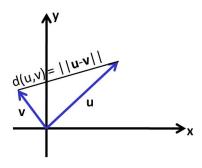
- Examples:

1.
$$\mathbf{x} = -1[1, 0, 0, 0] + 3[0, 1, 0, 0] + 4[0, 0, 1, 0] - 2[0, 0, 0, 1] = -1\mathbf{e}_1 + 3\mathbf{e}_2 + 4\mathbf{e}_3 - 2\mathbf{e}_4$$

2.
$$\mathbf{x} = [2, -1, 5] = 2[1, 0, 0] - 1[0, 1, 0] + 5[0, 0, 1] = 2\hat{i} - \hat{j} + 5\hat{k}$$

• Distance between two vectors: Let $\mathbf{u} = [u_1, u_2, ..., u_n]$ and $\mathbf{v} = [v_1, v_2, ..., v_n]$ be two vectors in \Re^n , then the distance between the two vectors is given by the formula:

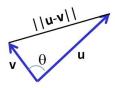
$$d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}|| = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \dots + (u_n - v_n)^2}$$



- Example: Let $\mathbf{u} = [2, 5]$ and $\mathbf{v} = [-1, 0]$, then

$$d(\mathbf{u}, \mathbf{v}) = \sqrt{(2 - (-1))^2 + (5 - 0)^2} = \sqrt{9 + 25} = \sqrt{34}$$

- Properties: If **u** and **v** are vectors in \Re^n , then
 - 1. $d(\mathbf{u}, \mathbf{v}) \ge 0$
 - 2. $d(\mathbf{u}, \mathbf{v}) = 0$ if and only if $\mathbf{u} = \mathbf{v}$
 - 3. $d(\mathbf{u}, \mathbf{v}) = d(\mathbf{v}, \mathbf{u})$
- **Angle between two vectors:** We are interested in finding the angle between two given vectors are pictured in the schematic below:



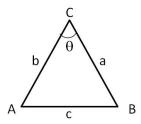
In order to do this, we need the Law of Cosines.

If we have the schematic above, then the Law of Cosines is given by

$$c^2 = a^2 + b^2 - 2ab\cos\theta$$

Using the law of cosines with our vector schematic, we have

$$||\mathbf{u} - \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2 - 2||\mathbf{u}||||\mathbf{v}||\cos(\theta)$$



Let's consider $\mathbf{u} = [u_1, u_2]$ and $\mathbf{v} = [v_1, v_2]$ in \Re^2 . Then

$$||\mathbf{u} - \mathbf{v}||^{2} = (u_{1} - v_{1})^{2} + (u_{2} - v_{2})^{2}$$

$$= u_{1}^{2} - 2u_{1}v_{1} + v_{1}^{2} + u_{2}^{2} - 2u_{2}v_{2} + v_{2}^{2}$$

$$= u_{1}^{2} + u_{2}^{2} + v_{1}^{2} + v_{2}^{2}) - 2(u_{1}v_{1} + u_{2}v_{2})$$

$$= ||\mathbf{u}||^{2} + ||\mathbf{v}||^{2} - 2(u_{1}v_{1} + u_{2}v_{2})$$

Combining this with

$$||\mathbf{u} - \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2 - 2||\mathbf{u}||||\mathbf{v}||\cos(\theta)$$

we have

$$||\mathbf{u}||^2 + ||\mathbf{v}||^2 - 2(u_1v_1 + u_2v_2) = ||\mathbf{u}||^2 + ||\mathbf{v}||^2 - 2||\mathbf{u}||||\mathbf{v}||\cos(\theta)$$

The $||\mathbf{u}||^2 + ||\mathbf{v}||^2$ cancels out leaving

$$-2(u_1v_1 + u_2v_2) = -2||\mathbf{u}||||\mathbf{v}||\cos(\theta)$$

Solving for $\cos(\theta)$, we have

$$\cos(\theta) = \frac{u_1 v_1 + u_2 v_2}{||\mathbf{u}||||\mathbf{v}||}$$

The numerator is defined as the **dot product** between **u** and **v**. Let's examine the dot product. Afterwards, we will continue looking at the angle between two vectors.

• Dot Product The dot product between two vectors \mathbf{u} and \mathbf{v} in \Re^n is denoted $\mathbf{u} \cdot \mathbf{v}$ and is defined by

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

Therefore, in \Re^2 , the dot product is simply

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2$$

- Examples

1. Let
$$\mathbf{u} = [1, 2]$$
 and $\mathbf{v} = [-1, 3]$, then

$$\mathbf{u} \cdot \mathbf{v} = 1(-1) + 2(3) = -1 + 6 = 5$$

2. Let $\mathbf{u} = [1, -2, 3, 4]$ and $\mathbf{v} = [2, 3, -2, 1]$, then

$$\mathbf{u} \cdot \mathbf{v} = 1(2) + (-2)(3) + 3(-2) + 4(1) = 2 - 6 - 6 + 4 = -6$$

- Properties of the Dot Product: Let \mathbf{u}, \mathbf{v} , and \mathbf{w} be vectors in \Re^n and c be a scalar in \Re . Then

- 1. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- 2. $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$
- 3. $c(\mathbf{u} \cdot \mathbf{v}) = (c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v})$
- 4. $\mathbf{v} \cdot \mathbf{v} = v_1 v_1 + v_2 + v_2 = ||\mathbf{v}||^2$
- 5. $\mathbf{v} \cdot \mathbf{v} \ge 0$ and $\mathbf{v} \cdot \mathbf{v} = 0$ if and only if $\mathbf{v} = \mathbf{0}$

- Examples: For the given \mathbf{u} and \mathbf{v} , find
 - a) $\mathbf{u} \cdot \mathbf{v}$
 - b) $\mathbf{u} \cdot \mathbf{u}$
 - c) $||{\bf u}||^2$
 - d) $(\mathbf{u} \cdot \mathbf{v})\mathbf{v}$
 - e) $\mathbf{u} \cdot (5\mathbf{v})$
 - 1. $\mathbf{u} = [-1, 2], \mathbf{v} = [2, -2]$
 - 2. $\mathbf{u} = [2, -1, 1], \mathbf{v} = [0, 2, -1]$

Answers

- 1. a) $\mathbf{u} \cdot \mathbf{v} = -6$
 - b) $\mathbf{u} \cdot \mathbf{u} = 5$
 - c) $||\mathbf{u}||^2 = 5$
 - d) $(\mathbf{u} \cdot \mathbf{v})\mathbf{v} = [-12, 12]$
 - e) $\mathbf{u} \cdot (5\mathbf{v}) = -30$
- 2. a) $\mathbf{u} \cdot \mathbf{v} = -3$
 - b) $\mathbf{u} \cdot \mathbf{u} = 6$
 - c) $||\mathbf{u}||^2 = 6$
 - d) $(\mathbf{u} \cdot \mathbf{v})\mathbf{v} = [0, -6, 3]$
 - e) $\mathbf{u} \cdot (5\mathbf{v}) = -15$
- Example: Find

$$(3\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} - 3\mathbf{v})$$

given that

$$\mathbf{u} \cdot \mathbf{u} = 8 \ \mathbf{u} \cdot \mathbf{v} = 7 \ \mathbf{v} \cdot \mathbf{v} = 6$$

Solution:

$$(3\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} - 3\mathbf{v}) = 3\mathbf{u} \cdot \mathbf{u} - 3\mathbf{u} \cdot (3\mathbf{v}) - \mathbf{v} \cdot \mathbf{u} + \mathbf{v} \cdot (3\mathbf{v})$$

$$= 3\mathbf{u} \cdot \mathbf{u} - 9\mathbf{u} \cdot \mathbf{v} - \mathbf{u} \cdot \mathbf{v} + 3\mathbf{v} \cdot \mathbf{v}$$

$$= 3(8) - 9(7) - 7 + 3(6)$$

$$= -26$$

• Back to the angle between vectors: The angle θ between vectors \mathbf{u} and \mathbf{v} is given by

$$\cos(\theta) = \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}||||\mathbf{v}||}, \ \ 0 \le \theta \le \pi$$

- Example: Let $\mathbf{u} = [1, 0, 0, 1]$ and $\mathbf{v} = [0, 1, 0, 1]$. Find the angle between \mathbf{u} and \mathbf{v}

$$\cos(\theta) = \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|||\mathbf{v}||} = \frac{1 \cdot 0 + 0 \cdot 1 + 0 \cdot 0 + 1 \cdot 1}{\sqrt{1^2 + 1^2} \sqrt{1^2 + 1^2}} = \frac{1}{2}$$

So,

$$\theta = \frac{\pi}{3}$$
 radians or 60°

- **Theorem** If **u** and **v** are nonzero and θ is the angle between them, then
 - * θ is acute if and only if $\mathbf{u} \cdot \mathbf{v} > 0$
 - * θ is obtuse if and only if $\mathbf{u} \cdot \mathbf{v} < 0$
- **Example:** Let $\mathbf{u} = [1, -1, 0, 1]$ and $\mathbf{v} = [-1, 2, -1, 0]$. Find the angle between \mathbf{u} and \mathbf{v} .

$$\mathbf{u} \cdot \mathbf{v} = -1 - 2 = -3$$
, $||\mathbf{u}|| = \sqrt{3}$, $\mathbf{v} = \sqrt{6}$

so

$$\cos(\theta) = \frac{-3}{\sqrt{3}\sqrt{6}} = -\frac{\sqrt{3}}{\sqrt{6}} = -\frac{\sqrt{2}}{2}$$

Then,

$$\theta = \frac{3\pi}{4}$$

- **Example:** Let $\mathbf{u} = [2, 3, 1]$ and $\mathbf{v} = [-3, 2, 0]$. Then $\mathbf{u} \cdot \mathbf{v} = -6 + 6 + 0 = 0$. Then

$$\cos(\theta) = \frac{0}{||\mathbf{u}||||\mathbf{v}||} = 0$$

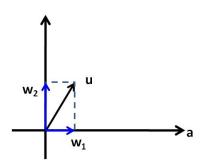
So, $\theta = \frac{\pi}{2}$ or 90° .

- **Orthogonal:** If $\cos \theta = 0$, i.e. $\theta = \frac{\pi}{2}$, then **u** and **v** are said to be *orthogonal* (or perpendicular). Therefore, two vectors **u** and **v** are *orthogonal* if

$$\mathbf{u} \cdot \mathbf{v} = 0$$

- Examples:

- 1. Determine all vectors orthogonal to u = [2, 7]. Ans: All vectors $\mathbf{v} = t[-7/2, 1]$ where t is any real number.
- 2. Determine all vectors orthogonal to u = [2, -1, 1]. Ans: All vectors $\mathbf{v} = [1/2(s-t), s, t]$ where s and t are any real number.
- **Projections:** Sometimes it is necessary to decompose a vector into a combination of two vectors which are orthogonal to one another. A trivial case is decomposing a vector $\mathbf{u} = [u_1, u_2]$ in \Re^2 into its \hat{i} and \hat{j} directions, i.e., $\mathbf{u} = u_1 \hat{i} + u_2 \hat{j}$. However, sometimes it is necessary to decompose it along a direction different than the standard coordinate directions. Say, we need to decompose a vector into components along a vector \mathbf{a} , say \mathbf{w}_1 and along a vector, \mathbf{w}_2 , on an axis orthogonal to \mathbf{a} . See the image below.



- In the above figure \mathbf{w}_1 is called the *orthogonal projection of* \mathbf{u} *on* \mathbf{a} or the *vector component of* \mathbf{u} *along* \mathbf{a} and is given by

$$\mathbf{w}_1 = \mathrm{proj}_{\mathbf{a}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{a}}{||\mathbf{a}||^2} \mathbf{a} \ \, (\mathrm{vector\ component\ of\ } \mathbf{u} \ \, \mathrm{along\ } \mathbf{a})$$

- \mathbf{w}_2 is called the vector component of \mathbf{u} orthogonal to \mathbf{a} and is given by

$$\mathbf{w}_2 = \mathbf{u} - \mathrm{proj}_{\mathbf{a}} \mathbf{u} = \mathbf{u} - \frac{\mathbf{u} \cdot \mathbf{a}}{||\mathbf{a}||^2} \mathbf{a}$$

- **Example:** Let $\mathbf{u} = [2, -1, 3]$ and $\mathbf{a} = [4, -1, 2]$. Find the vector component of \mathbf{u} along \mathbf{a} and the vector component of \mathbf{u} orthogonal to \mathbf{a} .
 - * vector component of **u** along **a**:

$$\mathbf{u} \cdot \mathbf{a} = 2(4) + (-1)(-1) + 3(2) = 15$$

and

$$||\mathbf{a}||^2 = 4^2 + (-1)^2 + 2^2 = 21$$

Then

$$proj_{\mathbf{a}}\mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{a}}{||\mathbf{a}||^2}\mathbf{a} = \frac{15}{21}[4, -1, 2] = \left[\frac{20}{7}, -\frac{5}{7}, \frac{10}{7}\right]$$

* vector component of ${\bf u}$ orthogonal to ${\bf a}$:

$$\mathbf{u} - \mathrm{proj}_{\mathbf{a}} \mathbf{u} = [2, -1, 3] - \left[\frac{20}{7}, -\frac{5}{7}, \frac{10}{7}\right] = \left[-\frac{6}{7}, -\frac{2}{7}, \frac{11}{7}\right]$$

– Formula for the length of the projection of ${\bf u}$ along ${\bf a}.$

$$\begin{aligned} ||\operatorname{proj}_{\mathbf{a}}\mathbf{u}|| &= & \left| \left| \frac{\mathbf{u} \cdot \mathbf{a}}{||\mathbf{a}||^2} \mathbf{a} \right| \right| \\ &= & \left| \frac{\mathbf{u} \cdot \mathbf{a}}{||\mathbf{a}||^2} \right| ||\mathbf{a}|| \\ &= & \frac{|\mathbf{u} \cdot \mathbf{a}|}{||\mathbf{a}||^2} ||\mathbf{a}|| \\ &= & frac |\mathbf{u} \cdot \mathbf{a}|||\mathbf{a}|| \\ &= & ||\mathbf{u}||| \cos \left(\theta\right)| \end{aligned}$$