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T
he Society for  College 
Science Teachers’ position 
statement  on introduc-
tory college level science 

courses (Halyard 1993) challenges 
those responsible for such courses: 
“Laboratory activities should fea-
ture experimental procedures that 
require students to think about, 
select, generate, test, and evaluate 
the effectiveness of hypotheses and 
the scope of their results.” As fac-
ulty in a university where multiple 
lab sections are taught by graduate 
teaching assistants or part-time 
temporary faculty, we find it dif-
ficult to provide the individual at-
tention required to monitor projects 
conducted by small groups or indi-
vidual students (Dimaculangan et 
al. 2000; Lunsford 2003; Norton et 
al. 1997; Ortiz 1994; Stager 1994; 
Tolman 1999). 

Like Grant and Vatnick (1998), 
“we lack the resources to supervise 
large numbers of independently 
active learners that populate our 
introductory courses,” and conse-
quently have adopted what they 
call bounded inquiry: “…students’ 
research questions and study sub-
jects are instructor constrained but 
hypotheses…are not a priori speci-
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f ied.” We are encouraged by ap-
parent success involving graduate 
teaching assistants as reported by 
Sundberg and Moncada (1994) and 
by Glasson and McKenzie (1997). 
Assuming that properly prepared 
graduate assistants in multiple-sec-
tion general education science labs 
can implement bounded inquiry, we 
offer ideas for how one might take 
advantage of multiple sections to 
enhance the inquiry experience.

With support from Howard 
Hughes Medical Institute to en-
hance undergraduate education in 
biological sciences, we modeled a 
community of scholars in general 
education biology labs by sharing 
data gathered in inquiry activities. 
We created databases that facilitate 
such data sharing and management 
in the two-semester nonmajors 
course and in two of three semes-
ters of our majors sequence. The 
ability to easily pool data col-
lected by multiple lab sections, 
both within and among semesters, 
effectively converts what is often 
seen as a liability—the need to 
teach large numbers of students in 
multiple sections—into an asset by 
enhancing statistical power of data 
analyses so that results are more 
meaningful, or selecting a subset 
of data from a larger database to 
inform further analysis.

In a population-level introduc-
tory biology course at our com-
prehensive regional university, fall 
semester enrollment is typically 
about 100 students with five sections 
of lab, and spring semester enrolls 
about 60 with three lab sections. The 
same part-time temporary faculty 
member teaches all lab sections. 
We illustrate two large-enrollment- 
dependent approaches called repli-
cate and rolling models for inquiry 
in this multiple-section environment. 
These models differ in how they use 
previously collected data: The rep-
licate model pools data to enhance 
power of statistical tests, while the 
rolling model uses previous results 
to suggest which hypotheses warrant 
further experimentation.  

Databases
When we planned how to store 
and manage large data sets we 
had several alternatives. First we 
created preprogrammed Excel 
spreadsheets where students could 
enter data to see in real time how 
different characteristics (distribu-
tions, slopes, and so on) change as 
data accumulate in the spreadsheet. 
This approach was effective for 
individual use, but analyzing large 
data sets this way is very labor in-
tensive. We needed a central data 
depository to collect and store 
data for future use, but one that al-
lowed multiple individuals to enter 
and retrieve data simultaneously 
from different computers. We also 
had to protect databases from re- 
editing by students or accidental 
deletions, but we wanted instruc-
tors to be able to edit databases to 
correct obvious errors. Combining 
an Access database with a network-
based form proved the best solution 
to these requirements. Network 
security ensures database integrity. 
Students use a web browser to com-
municate with the database via a 
simple form.

Every lab activity has a home-
page or a link (for examples see 
www.etsu.edu/biology/BIOL1131.
htm). From the main link, students 
go to the database interface where 
three choices are available. The 
f irst is a submission form where 
students can submit data. The sub-
mission form is clear and simple, 
but there are explanations for how 
to fill in blanks. If the wrong type 
of data are entered, or if data are 
out of reasonable range, the system 
asks the user to correct the error 
before data go into the database. 
If all data meet the predetermined 
criteria, the system accepts the 
submission and the student receives 
a confirmation page where all sub-
mitted data are listed. The server 
that stores the database processes 
incoming data using FrontPage 
Extensis protocols. 

All data are available from the 
results page, the second choice on 

the database interface page. For se-
curity reasons, the Access database 
is accessible only via FrontPage 
Extensis protocol. Data are available 
in a table format. Simple instruc-
tions are provided for transferring 
data into an Excel spreadsheet. After 
transfer, students can filter data as 
instructed (for example, based on 
lab sections, gender, and so on). In 
some cases, when complex calcula-
tions are needed, we set up an Excel 
spreadsheet to do these calculations. 
Because data can only be retrieved 
but not modified and saved, this is a 
secure data retrieval process.

The third option from the data-
base interface page is a password-
protected database editor. 

Replicate model
One constraint on accomplishing 
meaningful research in individual 
laboratory sections is low statisti-
cal power associated with stud-
ies that use only a few observa-
tions and relatively few replicates 
of experimental treatments. We 
have overcome this problem—and 
turned multiple lab sections into 
an asset—by combining observa-
tions of particular phenomena and 
experimental results from several 
lab sections, within and among 
semesters,  into one statistical 
analysis. We have used this ap-
proach with observational studies 
of heritability of human height and 
weight, and with experiments on 
plant competition.

Heritability
Heritability (h2) of continuous 
quantitative traits is the propor-
tion (or percentage) of phenotypic 
variance in a population that can 
be attributed to genetic differences 
among individuals rather than to 
environmental effects. This is an 
important concept for understand-
ing potential effects of selection on 
population means and variances for 
traits, such as body size and shape, 
behavior, intelligence, and so on, 
that are influenced by multiple gene 
loci. The ratio of the covariance (X, 
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weight and 76% for height. It is 
difficult to interpret such variable 
results. Furthermore, heritability 
is a proportion that should range 
from 0.0 to 1.0 (0% to 100%), so 
negative estimates (7 of 56) and 
those greater than 100% (17 of 56) 
would have no meaningful biologi-
cal interpretation.  

To avoid such inaccuracies, 
students add their data to an online 
database to be pooled with data 
from previous lab sections, semes-
ters, and years. Analysis of this 
much larger data set provides sub-
stantially more reliable estimates 
of heritability as evidenced by re-
duced coefficients of variation. As 
of this writing—using data for 116 
males and 140 females from fall 
2003 through spring 2005—those 
estimates (and coeff icients of 
variation) expressed as percentages 
were: male height, h2 = 79% (14%); 
female height, h2 = 76% (10%); 
male weight, h2 = 86% (17%); and 
female weight, h2 = 57% (19%). We 
find it satisfying that these values 
are similar to estimates of herita-
bility for human height and weight 
reported in professional literature 
(Brown et al. 2003).

As a graphical example, Figure 1 
shows a comparison of heritability of 
weight for males and females. The ob-
servation that heritability for females 
is much less than for males suggests 
that variance in female weight is less 
affected by genetics and thus more 
affected by environment; this can 
provoke discussions of how peer pres-
sure—part of the environment—may 
influence teenage females to control 
weight and thus express less of their 
genetic tendency.

 Plant competition
The classic Lotka-Volterra model 
of interspecif ic competition sug-
gests that one condition for stable 
coexistence at equilibrium is that 
the intensity of intraspecific com-
petition must be greater than the 
intensity of interspecific competi-
tion (Hutchinson 1978, p. 117). 
This phenomenon results in niche 

FIGURE 1 

Heritability of weight estimated as the slope of least squares linear regression of student weight 
on mid-parent weight at the same age:  86% for males (open triangles),  57% for females (closed 
squares). Note that the nonmetric English system of measurement was used for studies of 
weight because this is commonly used by Americans to discuss that variable.

Y) divided by the variance (X) is 
used to estimate the slope of least 
squares linear regressions. If X = 
average parent phenotype (usu-
ally called mid-parent value) and 
Y = offspring phenotype, we may 
estimate the proportion of pheno-
typic variance among parents that is 
passed on to offspring (heritability) 
as the slope of linear regressions 
of offspring phenotypes on mid-
parent phenotypes of biological 
parents (Falconer 1981, p. 152). 
For one lab activity each semester, 
students record in a database self-
reported values for their own height 
(inches) and weight (pounds) as 
well as the height and weight that 
their biological parents report for 
when they were a similar age. Such 
estimates—based on memory and 

perhaps biased for personal rea-
sons—may not be as accurate as one 
might like for contributing to the 
human genetics literature, but as an 
educational activity they illustrate a 
method of analysis quite well.

Between fall 2003 and spring 
2005, 14 sections of lab with en-
rollment ranging from 13 to 25 
students conducted such analyses. 
Had they used only data collected 
by their own sections, the number 
of data points for linear regres-
sions would have ranged from 4 
to 14 for females and from 3 to 14 
for males. Estimates of heritabil-
ity based on such small data sets 
would have been quite variable: 
coefficients of variation (standard 
errors divided by estimates) for 28 
estimates would average 192% for 
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partitioning among coexisting spe-
cies when resources limit popula-
tion growth for both.

We use an additive experimen-
tal design to assess competition 
effects on plant growth (Harper 
1977, p. 250). A target plant is 
surrounded by varying numbers 
of intraspecific (density effect) or 
interspecif ic (competition effect) 
competitors. In density treatments, 
target radishes are competing with 
radish neighbors; in competition 
treatments, target radishes are com-
peting with barley neighbors. We 
chose these plant species because 
both seeds are readily available and 
germinate and develop rapidly, and 
they are species with widely diver-
gent phylogenetic lineages.

One target radish seed is plant-
ed in the center of a four-inch pot 
in vermiculite, a relatively inert 
planting medium. A radish was 
chosen as the target because both 
green growth and size of the root 
can be used as performance indi-
cators. Zero (control), two, or six 
competitors surround each target. 
After eight weeks in the green-

house, target and competitors are 
harvested, washed of soil, dried, 
and measured for wet mass.

Students are asked to analyze 
data from their lab section and to 
write a lab report based on their 
analysis. For the first part of their 
analysis, students construct a stacked 
bar graph of the mean target mass 
and total biomass (target + neigh-
bors) for each of the six treatments 
(Figure 2). This graph can be used 
as a visual aid to compare masses 
between different density and com-
petition treatments. For the second 
part of their data analysis, students 
are asked to enter class data into an 
Excel spreadsheet and to perform 
a linear regression for target mass 
versus neighbor mass in density and 
competition treatments. Student t 
values corresponding to the null 
hypothesis of no competition (slope 
does not differ significantly from 
zero) are used to determine if in-
creasing neighbor mass significantly 
reduces target mass. Another t-test 
comparing slopes of the density 
and competition treatments tests 
whether the intensity of intraspecific 

and interspecific competition are 
significantly different.

After class, the instructor ana-
lyzes the class’s data along with 
data from previous semesters and 
presents results of analysis of 
the larger data set the next week. 
Two trends have emerged from 
this study. First, in density and 
competition treatments, target 
mass decreases as the number of 
neighbors increase; that is, both 
types of competition significantly 
reduce plant mass (Figure 2). Sec-
ond, target radish plants surrounded 
by six radish neighbors (D6) are 
smaller than targets surrounded by 
six barley neighbors (C6) (Figure 
2). However, effects of intraspe-
cific and interspecific competition 
on the target were similar when 
there were only two neighbors. 
Therefore, effects of intraspecific 
competition are more severe than 
effects of interspecific competition 
only when there are large numbers 
of neighbors (competitors). The 
other striking result that emerged 
from the full data analysis is that 
total biomass increases as number 
of neighbors increases from two to 
six. This observation has impor-
tant agricultural and biodiversity 
implications—that mixtures can be 
more productive than monocultures 
(Tilman et al. 2001). 

Rolling model
Rolling inquiry is another way to 
take advantage of multiple lab sec-
tions and to model a community 
of scholars. Students in one lab 
section identify a hypothesis and 
design an experimental test. They 
set up an overnight experiment, 
but leave it to the next section to 
gather resulting data and to ana-
lyze and interpret those results. In 
a group discussion, students in the 
second section then decide whether 
to repeat the same treatments (to 
enhance statistical power) or to 
modify them to test another hy-
pothesis. This process continues 
through multiple sections and is 
completed when the f irst section 

FIGURE 2 

Mean plant mass (and standard errors) in density and competition treatments. D represents 
density treatments, C represents competition treatments; a number following D or C represents 
the number of neighbors.
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finally gathers data from an experi-
ment set up by the final section. All 
data are recorded in an online da-
tabase so that each lab section can 
benefit from examining the larger 
data set to determine what hypoth-
eses have already been tested, and 
which might bear repeating.    

Ant preference for seeds
Students are given lecture instruc-
tion on the hypothesized ant-plant 
mutualism in which some plants 
produce seeds with an external 
fat body (eliasome). The energy 
reward of the eliasome presum-
ably attracts ants that carry the 
seed to the nest and thereby act 
as dispersal agents (Dunn 2005). 
The experimental approach, sug-
gested by Dr. B.D.J. Meeuse at the 
University of Washington, is con-
ducted in the field and challenges 
ants with a choice between seed 
types. The design, referred to as a 
cafeteria experiment, has been used 
to show that ants of several spe-
cies transport violet seeds to their 
nests (Culver and Beattie 1978). 
In the nest, eliasomes are usually 
removed but germination capacity 
is not impaired.

In a typical series of lab sec-
tions, the Monday section may 
choose to test the hypothesis that 
seeds with eliasomes are preferred 
over those without. They would set 
up a replicated experiment in which 

each pair of students lays out a cir-
cle of alternating violet and radish 
seeds. These plant species produce 
seeds of similar size and color but 
the violet seeds have an eliasome. 
The next morning, the Tuesday sec-
tion collects data from the experi-
ment laid out on Monday. They use 
a chi-square test to determine if the 
ants had a signif icant preference 
for violet seeds over radish seeds. 
If the violet seeds were preferred, 
the Tuesday section may choose 
to test whether the preference was 
caused by the presence of fat on the 
violet seeds. They may design an 
experiment using only radish seeds, 
half of which had a fat body added 
with a dab of Crisco. The radish 
seeds with fat might be preferred. 
If so, the Wednesday section could 
choose to focus more clearly on fat 
as attractant. They might remove 
the seed variable by using brown 
beads (of similar size to a violet 

seed), half of which had Crisco 
placed in the center cavity. If beads 
with fat were preferred over beads 
without fat, the Thursday section 
may then attempt to eliminate the 
color variable by giving ants a 
choice of different colored beads, 
all with added fat.

At the end of each series of ex-
periments, the entire set of hypoth-
eses, data, results, and interpreta-
tions is placed in the class database. 
Our results show that violet seeds 
are strongly preferred over radish 
seeds (Table 1). Ants maintain the 
preference for violet seeds even 
when radish seeds are coated with 
fat. However, we were surprised to 
learn that the fat we have used is 
not by itself a significant attractant 
when coating either a seed or a bead 
(Table 1).

Discussion
Replicate and rolling models pro-
vide benefits to students and in-
structors. The rolling approach 
relieves some of the tedium for in-
structors who must repeat the same 
experiment over and over. Similarly, 
students do not enter class already 
knowing the expected results gar-
nered from conversations with peers 
previously enrolled in the course. 
Rather, students have the opportu-
nity to test hypotheses developed 
through group discussions.

When we first introduced roll-
ing models in fall 2000, a student 
survey asked whether this approach 
was more or less interesting and 
informative than a traditional lab; 
54% chose “more.” But the same 

TABLE 1

Number of seeds or beads removed. Pooled data from multiple experiments. 

Type 1 Type 2 X2 value

Violet
122

Radish
43+ 37.82*

Violet
106

Radish w/ fat
43

26.64*

Bead
43

Bead w/ fat
22

6.79*

Seed (no fat)
96

Bead w/ fat
65

 5.97*

* Significant at p < 0.05
+ In one section, many seeds were dispersed by exceptionally strong winds.

Students do not enter class already 
knowing the expected results garnered 
from conversations with peers previously 
enrolled in the course. Rather, students 
have the opportunity to test hypotheses 
developed through group discussions.
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survey found that two projects us-
ing the rolling approach—ant dis-
persal of seeds, and sow bug habitat 
preference—received the lowest 
percentage of favorable responses 
(43% and 49% respectively) of 
eight lab activities. Discussion with 
students identif ied an important 
drawback of the rolling model: 
students do not get to analyze 
data from their own experiment. 
Electronic databases that allow 
students to review all hypotheses, 
data, and analyses were developed 
to overcome that objection. Though 
we have not conducted a follow-up 
survey, our impression is that stu-
dents now feel more ownership of 
the entire experiment. 

Accumulation and analysis of 
long-term data using the replicate 
model mitigates one of the most 
discouraging phrases used by sci-
ence instructors: “The experiment 
didn’t work, but if it had….” Rather 
than burdening students with the 
stigma of a failed experiment, 
all data are placed in a database. 
Experimental results somewhat re-
moved from the mean or true value 
demonstrate natural variability in-
herent in biological systems; these 
data highlight the weakness of 
conclusions based on small sample 
sizes. For example, graphical pre-
sentation of heritability estimates 
allows students to view their class 
data points, regardless of location, 
and see that their points represent a 
few pieces of a larger picture. The 
fall 2000 survey mentioned above 
found that three projects using 
the replicate model—heritability 
of height, plant competition, and 
water flea population growth—re-
ceived the highest percentages of 
favorable responses (74%, 84%, 
and 88% respectively). When asked 
whether combining data from the 
entire class was helpful or dis-
tracting, 88% of students surveyed 
chose “helpful.”

Both laboratory-based instruc-
tional models also provide in-
structional benef its beyond the 
laboratory class. Real, long-term 

data, collected by students, are 
used in lectures to illustrate topics 
in evolution and population genet-
ics. Moreover, these data have been 
made available to the mathematics 
department for use in courses in 
probability and statistics. ■
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