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Abstract.
Compartmentalization is a general principle in biological systems which is observable on all

size scales, ranging from organelles inside of cells, cells in histology, and up to the level of groups,
herds, swarms, meta-populations, and populations. Compartmental models are often used to model
such phenomena, but such models can be both highly nonlinear and difficult to work with.

Fortunately, there are many significant biological systems that are amenable to linear com-
partmental models which are often more mathematically accessible. Moreover, the biology and
mathematics is often so intertwined in such models that one can be used to better understand the
other. Indeed, as we demonstrate in this paper, linear compartmental models of migratory dynam-
ics can be used as an exciting and interactive means of introducing sophisticated mathematics, and
conversely, the associated mathematics can be used to demonstrate important biological properties
not only of seasonal migrations but also of compartmental models in general.

We have found this approach to be of great value in introducing derivatives, integrals, and the
fundamental theorem of calculus. Additionally, these models are appropriate as applications in a
differential equations course, and they can also be used to illustrate important ideas in probability
and statistics, such as the Poisson distribution.
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1. Introduction
Mathematical models and dynamical systems are becoming increasingly important in biology edu-
cation [5, 14], as are realistic representations of biological phenomena [6]. In ecology, for instance,
such realistic representations have a long history of being implemented with compartmental model-
ing. Similarly, compartmental modeling is both important and increasing in importance in biology,
medicine, pharmacology, and a number of the other life sciences [28], often as a pathway into
systems biology [1]. However, the mathematics associated with these applications is not always
student friendly, especially when the models meet the need for meaningful quantitative applica-
tions [9, 27].

Fortunately, there are linear compartmental models which are not only important in the bio-
sciences, but are also mathematically accessible, even for undergraduate students with limited
backgrounds. For example, linear compartmental models are effective in modeling the kinetics of
a tracer through a system that is in steady state [8] and have been used in conjunction with tracer
experiments at the whole-body, organ, and cellular level [17]. Linear compartmental models are
also used in epidemiology, in proteomics, in ecology, and elsewhere [10, 22, 25].

Conversely, the biological contexts that utilize linear compartmental models can be used to
introduce and develop many aspects of differential and integral calculus [20]. Indeed, many linear
compartmental systems are analogous to the biological context of migratory models [3], and there
are migratory models that are intuitive, accessible, and amenable to highly visual, “hands-on”
exploration.

In this paper, we focus on the annual juvenile salmon migrations toward the oceans. Each year,
adult salmon swim from the ocean upstream to mouths of the rivers where they were spawned, and
once there each surviving female lays thousands of eggs. The eggs hatch into aleven, grow into fry,
and subsequently enter a process of “smoltification” in which they transform physiologically from
fresh water to saltwater fish. They then swim downstream to the nutrient-rich open ocean where
they develop into adults [12].

However, these annual migrations have been compromised, often severely, by the construction
of dams and other man-made features, thus greatly adding to the naturally large mortality rates of
the smolt populations and creating the need for mathematical models which incorporate mortality
into the migrations [4, 29]. In their simplest forms, such models can be highly appropriate for
students with little or no mathematical preparation, thus providing an intuitive context in which to
introduce important mathematical ideas. Subsequently, as the models increase in size and scope
– and as the level of student preparation increases – the associated mathematical concepts acquire
rigorously accurate, highly intuitive interpretations that are beneficial to the biology.

We begin by discussing a simple, single-compartmental model, which correspondingly allows
us to intuitively introduce important ideas in calculus, as well as in probability. We then progress to
a full multi-compartmental model with progressively more sophisticated mathematics [11]. Ulti-
mately, we transition from the value of the biological context in introducing mathematical concepts
to the value in using mathematics to better understand the associated biology. Throughout, we dis-
cuss how this material can be (and has been) used to introduce and explore concepts in calculus
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and probability that are important throughout quantitative biology and biology education.

2. Compartmental Modeling of Idealized Migrations

2.1. Exploring the Biological Context
Typically, we introduce these models by dividing a river into a contiguous collection of habitat
zones and assuming that the population is initially in zone 0, which corresponds to the river segment
where the salmon hatched and developed into smolt. After living in zone 0 for almost a year,
the smolt will actively swim down the river into the ocean estuaries, which corresponds in our
model to moving independently at the same rate, on average, through the sequence of zones (i.e.,
compartments).

zones

Last
Zone

Zone
0

Figure 1: Habitat zones between hatching site (zone 0) and the ocean (last zone)

Thus, if N(t) is the population of the habitat zone at time t in days, then the population one
day later satisfies

N (t+ 1) = N (t) + Arrivals− Departures,

where the arrivals and departures are those entering or leaving, respectively, during that day.

Figure 2: Habitat zone with population N(t) at time t.

More generally, arrivals and departures may be in units of individuals per hour or individuals
per minute rather than individuals per day. Consequently, if ∆t is the time increment in question –
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i.e., the next day, the next hour, etcetera – then arrivals are at an immigration rate of I individuals
per unit time, or equivalently,

Arrivals during a given time increment = I ·∆t.

Likewise, Departures = E ·∆t, where E is the rate of emigration, so that the model of the habitat
zone population is, in general,

N (t+ ∆t) = N (t) + I∆t− E∆t.

2.2. Motivating Concepts in Calculus
Conversely, this model allows us to introduce concepts in calculus in an intuitive fashion. For ex-
ample, there is no emigration out of the final habitat zone – i.e., the Ocean – other than a relatively
small number, ε > 0, of “removals” per unit time. Thus, the model for the ocean is given by

N (t+ ∆t) = N (t) + I∆t− ε∆t. (2.1)

A natural question is that of how to measure the rate I at which the smolts are entering the ocean,
especially if I = I (t) is a function of t itself (changing over time). Solving for I in (2.1) leads to

I (t) =
N (t+ ∆t)−N (t)

∆t
+ ε.

Supposing now that the removal rate ε is so small that it approaches 0 as ∆t itself approaches 0,
we have

I (t) = lim
∆t→0

N (t+ ∆t)−N (t)

∆t
,

where the notation lim
∆t→0

means the result obtained by letting ∆t become an arbitrarily small time

increment (minutes, seconds, milliseconds, etcetera). We now have the rate of change, I(t), of the
population given by the definition of the derivative.

Similarly, if T = n∆t for some very large n – typically, T is about 1 month [12] whereas
∆t is in days or minutes – then the question of the total number of smolts entering the ocean (i.e.,
ignoring removals, for now ) leads us to notice that

N (t0 + ∆t) = N (t0) + I (t0) ∆t = N (0) + I (t0) ∆t,

N (t1 + ∆t) = N (t1) + I (t1) ∆t = N (0) + I (t0) ∆t+ I (t1) ∆t,

and so on, where tk = t0 + k · ∆t. Continuing in the same fashion, we find that the number of
smolts entering the ocean between time 0 and time T is

N (T ) = N (0) +
n−1∑
k=0

I (tk) ∆t.
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Again, allowing ∆t to approach 0 leads to

N (T )−N (0) =

∫ T

0

I (t) dt =

∫ T

0

N ′ (t) dt,

which is the fundamental theorem of calculus.
Additionally, it is easy to justify – indeed, the core of engineers uses this concept – that we

need not use the same ∆t for every increment. Early and late in the migration, units of individuals
per day are more than sufficient, whereas at times in between it may be necessary to change to
units of individuals per hour or minute. In this way, we can argue that a correct definition of the
integral should be ∫ T

0

I (t) dt = lim
∆t→0

n−1∑
k=0

I (tk) ∆tk,

where ∆tk ≤ ∆t for all k = 1, . . . , n. Given sufficient technology via simulations and data, these
notions of derivative and integral can be made highly intuitive within this context.

3. A One Compartment Model for Zone 0

3.1. Exponential Decay and the Exponential Distribution
When the smolt migration begins, the majority of the juvenile salmon are in the streams where they
were spawned. We refer to these habitats collectively as zone 0, and given students with a sufficient
calculus background, then the discussion can move to a level of sophistication appropriate for a
first modeling course, such as those represented by textbooks like [2] or [25].

Based on physiological and environmental factors the smolt population starts a very synchro-
nized migration downriver, often leaving zone 0 just a few days after the migration starts.

We assume that each individual randomly emigrates from zone 0, so that if N0(t) is the size of
the population at time t (typically, in days) and if m is the constant per capita rate of migration,
then the population at some small increment ∆t since time t satisfies

N0(t+ ∆t) ≈ N0(t)− (m∆t) ·N0(t), (3.1)

where the approximations (≈) become exact as ∆t approaches zero.2 Typically, we simulate this
behavior by imagining zone 0 to be a “lake” with fish swimming quickly enough that they randomly
encounter the mouth of the adjoining river and begin their journey to the ocean.

We also show that if the initial population of zone 0 is denoted by K, then

N0(∆t) ≈ K(1−m∆t), N0(2∆t) ≈ K(1−m∆t)2,

2When working with students, we tend to use either ∆t – or even just ∆ – to denote the time increment ∆t.
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Figure 3: An agent based simulation of zone 0 (Netlogo)

and etcetera, so that for any positive integer j we have N0(j∆t) ≈ K(1−m∆t)j. Since t = j∆t
is the result of j time steps, we have

N0 (t) ≈ K

(
1− mt

j

)j
, (3.2)

which in the limit as ∆t→ 0 (i.e. j →∞) leads to

N0 (t) = Ke−mt.

After exploring this model via simulations and other activities, it may be appropriate to intro-
duce an alternative interpretation – i.e., a probabilistic interpretation – of the model. For each
t > 0, the proportion of the population remaining in the lake at time t is

pr (t) =
Ke−mt

K
= e−mt.

Consequently, if we interpret the probability that a fish chosen at random remains in the lake until
time t to be equal to the proportion of the overall population that remains at time t, then

Pr (waiting until time t) = e−mt,

and conversely, the probability that a fish leaves the lake by time t is

Pr (departure by time t ) = 1− e−mt.

Alternatively, if t is fixed, then µ = mt can be interpreted as the average number of departures
from zone 0 between times 0 and t, which means that e−µ is the probability that a fish chosen at
random remains in zone 0 after t days.
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Simulations in Netlogo can be used to illustrate and explore this probabilistic interpretation
[30]. In these simulations, the physiological and environmental factors influencing the rate of mi-
gration are modeled by a “relative flow rate” [19]. For example, if initially there are 100 individuals
with a per capita emigration rate of 100% per day, then there will be approximately 100e−1 ≈ 37
fish remaining after one day, approximately 100e−2 ≈ 13.534 after 2 days, and so on. Or equiva-
lently, the simulation for a single marked fish can be run repeatedly from time 0 to time t, and then
the proportion of the total trials in which the marked fish remains can be calculated.

In addition, the simple form of this model allows us to explore real-world data, such as data
from the Fish Passage Center (www.fpc.org) which measures fish populations over time at various
locations along the Columbia river and its tributaries. Finally, the derivation of (3.2) allows us to
motivate the biologically important Bernoulli Approximations, which say that if a is sufficiently
close to 0 and if N is sufficiently large, then

(1 + a)N ≈ eNa, (1− a)N ≈ e−Na.

These approximations are used frequently in biology – for example, in population genetics [15].

4. A Multi-compartment Migratory Model

4.1. The First Two Zones
Students who have sufficiently acquired the material for zone 0 will soon realize that fish leaving
zone 0 are migrating into zone 1 – and they are entering zone 1 at the same per capita rate m at
which they left zone 0. Consequently, if N1 (t) is the population of zone 1 at time t and if fish are

N0(t) N1(t)
m1m

N0(t) N1(t)
m1m

Figure 4: The migration model for zone 1

leaving zone 1 (and entering zone 2) at a per capita rate of m1, then

Next ≈ Now− Emigration + Immigration
N1 (t+ ∆t) ≈ N1 (t)− (m1∆t)N1 (t) + (m∆t)N0 (t) .

That is, a percentage m∆t of the population N0 (t) in zone 0 enter into zone 1 over a period of ∆t
days, while a proportion m1∆t of N1 (t) depart. After some algebraic manipulation and a limit,
we have the following differential equation model for zone 1:

dN1

dt
= −m1N1 +mN0 (4.1)
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If m1 6= m, then the initial condition N1 (0) = 0 implies a solution of the form

N1 (t) =
mK

m−m1

(
e−m1t − e−mt

)
. (4.2)

However, we tend to de-emphasize this case because it becomes exponentially more compli-
cated as the number of compartments increases and because if m1 is even crudely approximately
the same as m, then the case m1 = m produces a solution that is qualitatively very similar (see
Figure 5 ).

Instead, we motivatem1 = m by similar flow rates, similar fish speeds, etcetera. Subsequently,
we use the form N0 = Ke−mt to motivate a “guess” of N1 (t) = Cte−mt for some unknown
constant C, and then we substitute into the differential equation (4.1) to determine C. After
simplifying, we find that

N1 (t) = mt Ke−mt.

Although not similar algebraically to the solution (4.2) in which m1 6= m, Figure 5 illustrates that
the solutions are qualitatively very similar even if m1 is only very roughly the same as m.
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Figure 5: Zone 1 population for m1 = 0.6, m = 0.568 (black) and for m1 = m = 0.568 (blue).

4.2. Multiple Zones and the Poisson Distribution
More generally, given a sequence of zones (compartments), we can use the same process used for
zone 1 to explore the solutions for subsequent zones.

N0(t) N1(t)
m

N2(t)
m

Nn-1(t)
m

Nn(t)
mm ...N0(t) N1(t)

m
N2(t)

m
Nn-1(t)

m
Nn(t)

mm ...

Figure 6: The entire compartmental model of migration down a river to the sea.
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To begin with, if Nj (t) is the population of zone j at time t, then the discussion used for zone
1 applied to zone j leads to

dNj

dt
= −mjNj +mj−1Nj−1. (4.3)

Again, we motivate an assumption of m = m1 = m2 = . . . = mj, so that (4.3) is an Erlang
differential equation (whose solution leads to the Erlang distribution).

Inductively, we useN1 (t) = (mt)Ke−mt to motivate us to guess thatN2 (t) = C (mt)2Ke−mt

for some unknown constant C. Substituting and solving for C leads to

N2 (t) = K
(mt)2

2
e−mt.

Similarly, using the form of N2 (t) along with the product rule leads us to show that

N3 (t) = K
(mt)3

3!
e−mt

and so on, so that for each j = 0, . . . , n− 1., we have

Nj (t) = K
(mt)j

j!
e−mt.

This sequence of solutions is illustrated in Figure 7.
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Figure 7: Solutions for zone 1 (black), zone 2 (green), zone 3 (aqua), zone 4 (blue), zone 5 (purple),
zone 6 (magenta), and zone 7 (red).

As we develop the mathematics for the idealized migration model, we also explore it via inter-
active simulations. In particular, the students can watch individual fish as they swim through the
sequence of zones (compartments). Consequently, after sufficient exposure to the mathematics
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and to the simulations, we note that for fixed t, the quantity µ = mt is the average number of fish
remaining in zone 0 at time t. Consequently, the solution

Nj (t) = K
µj

j!
e−µ

is the number of fish remaining in zone j at time t. The proportion of the original population of
size K located in zone j at time t is thus

pr =
µj

j!
e−µ.

If we define individual “success” to be that of moving from one zone to the next, then being in
zone j is equivalent to “j successes.” This means that if X is the random variable representing the
number of successes of a fish chosen at random, then

Pr (X = j) =
µj

j!
e−µ,

which is the Poisson distribution. Thus, our idealized migration model leads to a highly intuitive,
mathematically defensible introduction to the Poisson distribution.

Correspondingly, this context allows the introduction and exploration of associated concepts,
such as the central limit theorem, the normal distribution, and the Poisson approximation of the
normal. In particular, as shown by the red curve in Figure 7 and as is apparent in the interactive
models, small variations in individual behavior tend to lead to a “bolus” movement of the “herd”
(i.e., the population). Consequently, by the time the population reaches zone j for j sufficiently
large, it is approximately normally distributed in time. It is a beneficial exercise to have stu-
dents find the maximum and inflection points of Nj (t) and thus obtain the “mean” and “standard
deviation” of the corresponding normal distribution.

5. Incorporating Mortality
The last habitat zone does not have any emigration and at this point, also has no reproduction or
mortality, so that the total population of the system is fixed at K. Thus, the population of the last
habitat zone is K less the sum of all the smolts in all the zones except the last one:

Nn (t) = K −
n−1∑
j=0

Nj (t) = K −K
n−1∑
j=0

mjtj

j!
e−mt.

This allows us to construct a full model of the idealized migration, and it also allows us to discuss
mortality in the migration models.

In particular, mortality is incorporated by assuming that each habitat zone has two emigration
terms–one to the next habitat zone at rate m and one to a “zone” called the removeds at a per capita

10



J. Knisley Compartmental Models of Migratory Dynamics

Figure 8: R (t) is the number removed from the population at time t.

death rate µ for each zone. (This is conceptually similar to classic SIR epidemiological models,
in which the “R” compartment represents those “removed” from the infected population by either
recovery or mortality).

If we assume density dependent mortality, then the the total number R(t) removed from the
system by time t satisfies the differential equation R (t) is

dR

dt
= µN0 + µN1 + . . .+ µNn = µ (N0 +N1 + . . .+Nn) .

However, since the population is size K initially, there must be K smolts in the system at all times,
so that

N0 (t) +N1 (t) + . . .+Nn (t) +R (t) = K

and thus, N0 +N1 + . . .+Nn = K −R. It follows that

dR

dt
= µ (N0 +N1 + . . .+Nn) = µ (K −R (t)) .

That is, no matter how many zones are in the system, the removeds satisfy the differential equation

dR

dt
= µK − µR,

which has a solution of
R (t) = K −Ke−µt.

Similar to above, it can also be shown that the solution for the jth zone is

Nj (t) = K
mjtj

j!
e−(m+µ)t, j = 0, . . . , n− 1.
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6. Conclusions
Although we have focused on a particular migratory model in this paper, the same approach can be
used in a number of biological contexts. Specifically, linear compartmental models can be used,
as a starting point at least, in the study of other migratory populations, including the huge herring
swarms that migrate every year, the gnu-mass migration ins the African savanna, the migratory
birds, the whales moving between Hawaii and the Arctic, the “Acherontia atropos” moth migrating
throughout Europe, and the giant-honeybee colonies that move across India every year, to name a
few [13].

Moreover, in pharmacokinetic studies, many agents – drugs, tracers, etcetera – are assumed
to flow at a relatively fixed rate through a linear compartmental system, where the compartments
are organs or systems or even cells [17]. Often such systems are studied only qualitatively or via
numerical simulations. However, as this paper illustrates, the concept of “habitat zones” can be
re-interpreted as pharmacokinetic compartments, thus allowingNj(t) to be interpreted as the tracer
concentration at time t in compartment j. Correspondingly, the Poisson-distribution like solutions
described above are instead closed form solutions of the pharmacokinetic system itself. In the very
least, obtaining closed form solutions instead of individual numerical simulations can be used to
illustrate the biological value in analytical approaches to mathematically sophisticated models.

Moreover, this modeling approach also has value mathematically, if only in motivating the
same mathematics in contexts ranging from Erlang distributions in protein-protein interactions
[16] to the development of Poisson models in the study of fossils [26]. There are also many other
aspects of this model which can be explored. For example, we did not discuss the fact that K is
an equilibrium of the last habitat zone, the motivation for statistical testing of the goodness of fit
of the model to migratory data, or the use of multi-variable Taylor’s series to explore how sensitive
the model is to variations in the parameters mj .

Admittedly, these models are highly idealized. However, appropriate biological contexts for in-
troducing mathematical ideas are of significant pedagogical importance [21]. Mathematical models
provide templates where data, mechanisms, simulations, and theories are represented in a uniform
and transparent fashion which makes it easy for members of interdisciplinary teams to collaborate
[18]. Correspondingly, the development of mathematical pedagogy within suitable biological con-
texts has been one of the primary goals of the Symbiosis project [24]. Indeed, as first models – and
especially as pedagogical tools – we have found the modeling of migration to not only be valuable
biologically, but also of significant value mathematically, even serving as a canonical illustration
of biological systems in much the same way that the harmonic oscillator serves as a canonical
example in physics.
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