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The Crossroads between Biology and 
Mathematics: The Scientific Method 
as the Basics of Scientific Literacy

Istvan KarsaI and GeorGe KampIs

Biology is changing and becoming more quantitative. Research is creating new challenges that need to be addressed in education as well. New 
educational initiatives focus on combining laboratory procedures with mathematical skills, yet it seems that most curricula center on a single 
relationship between scientific knowledge and scientific method: that of the validity of knowledge claims, judged in terms of their consistency with 
data. Collecting data and obtaining results (however quantitative) are commonly part of science, but are not science itself. We envision that the 
operative use of the complete scientific method will play a critical role in providing the necessary underpinning for the integration of math and 
biology at various professional levels.
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Modern scientific advances have transformed the life 
sciences, but until recently they had little influence on under-
graduate training, leaving an unprecedented gap between 
teaching and research (McComas 1998, Abell and Lederman 
2007, Kerfeld and Simon 2007). In 2003, the National Research 
Council issued BIO2010, a report that suggested that biology 
should become more quantitative, an issue to be addressed 
both in research and education (NAP 2003). Biological 
researchers and educators today are closely collaborating 
with mathematicians and scientists from other fields. Even 
if tomorrow’s biologists had a more extensive mathematical 
and computational background, a single person could not, in 
general, pursue all these fields in depth; thus, the formation 
of interdisciplinary collaborations continues to be essential 
in the pursuit of biology (Karsai and Knisley 2009). 

These days, mathematics enters at every stage of science: in 
designing an experiment, seeking response patterns, and in 
the search for underlying mechanisms. The interdisciplinary 
approach is at the heart of many research areas, such as in 
genomics, where the size and complexity of the data sets and 
the scale of the problems require the joint expertise of com-
puter scientists, statisticians, and biologists. However, while 
this type of collaboration is becoming more common in 
research, the real challenge seems to begin at the undergradu-
ate level (Musante 2005), where we must train a workforce 
that is able to do collaborative work efficiently. According 
to major surveys, American students graduate from college 

D’Arcy Thompson began his book On Growth and Form   
(1917) by quoting Immanuel Kant: “…chemistry 

was a science, but not a Science…for that the criterion of 
true Science lay in its relation to mathematics.” Thomp-
son went on to explain how chemistry was elevated to the 
level of “Science,” whereas biology had not yet reached 
that level. The search for universal quantitative laws of 
biology can be daunting, given the extraordinary com-
plexity of biological systems (West and Brown 2004). Yet 
when such an interdisciplinary approach proves success-
ful, it often provides a major breakthrough in biology (as 
was first exemplified by the discovery of the Mendelian 
laws of inheritance). We are now starting to understand 
that the amazing complexity and diversity of living or-
ganisms commonly stems from ultimately simple rules 
that can be explored by computational and mathematical 
means (Kauffman 1993). Although Thompson’s attitude 
is widely present in the scientific culture today, we main-
tain that mathematics alone will not turn a field into 
science, but the application of the scientific method does. 
To illustrate this, we intend to show how mathematics, 
inquiry-based learning, and the application of a modern 
philosophy of science could produce pedagogy to better 
teach biology as a science. In this article, we define the 
“scientific method” as the sorts of things scientists do, 
and contrast this with the demonstrative methods more 
frequently used in current instruction.
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poorly prepared to enter the math, science, and technology 
workforce (Stukus and Lennox 1995, NAP 2003, Abell and 
Lederman 2007). We argue that simply introducing more 
mathematics to biology majors will not solve this problem. 

We believe that for mathematics to make sense in biology 
education, science should make sense first. The issue has two 
interrelated aspects, and we deal with them separately: They 
are the understanding of science and the understanding of 
mathematics for science (in this case, for biology). 

Inquiry-based approach 
Inquiry-based investigation is widely publicized as a basis 
of science instruction. The National Research Council’s 
National Science Education Standards (1996) encourage 
teachers to focus on inquiry, where students are expected 
to formulate their own questions and devise ways to answer 
them. These are generally inductive activities that require 
students to work out their own procedures, collect their data, 
present and analyze those data, and derive conclusions from 
the results they obtain (DeBoer 1991). Because data collection 
and processing are quantitative ways to study biology, fresh-
man inquiry-based labs are commonly the first venues where 
students study biology using statistics or simple math.

As a pedagogical approach, of course, inquiry is full of 
merits, and inductive activities tend to bring undergraduates 
closer to understanding science (Kerfeld and Simons 2007). 
However, the integration of this approach into the curricu-
lum commonly has flaws, and the true nature of inquiry is 
often forfeited in this process (Edwards 1997). Published 
research material is frequently too heavily structured and 
too complex for undergraduates, so instead of an original 
research project, preselected substitutes—so-called real-life 
problems—are investigated in the classroom, in a seriously 
canned manner. Understandably, there are common techni-
cal and logistic constraints (one of them is time), but the 
real danger is that technical difficulties in implementing an 
inquiry can change the whole pedagogy: Using scientific 
inquiry without first teaching the proper scientific method 
may generate a complete misunderstanding of how science 
works. Asking questions, collecting data, and obtaining an 
answer from the latter are parts of the scientific method, 
but do not wholly constitute the scientific method itself 
(Musante 2009). 

Going a step further, it is true that the scientific method 
can be best learned through research (Roth 1995). So again, 
with right sentiment, many argue that getting undergradu-
ates involved in research is important (McComas 1998). 
However, we argue that there is too much of a difference 
between engaging in research (such as a single project that 
continues for years) and doing “research projects” in the 
classroom. Many students are initially uninterested in sci-
ence and some are actually afraid of it (Demers 2003). Many 
science majors are attracted to health professions but lack 
awareness of how science operates in general, or how this 
knowledge is important for their chosen career (Felzien and 
Cooper 2005). 

Most undergraduates never meet anything close to real 
science, and are exposed to “research activities” in a class-
room setting only. Simple investigation or inquiry, although 
called “research,” is in reality not research at all (Ortez 1994, 
Mrosovsky 2006). Using the Google search engine and 
collecting (i.e., literally “researching”) information into a 
report, or following a cookbook lab protocol are examples of 
“research” that in fact do not use the methods of science. By 
concentrating exclusively on such exercises, it is easy to lose 
focus of what real research is all about. Pedagogy should not 
give in to logistical problems. Attacking a smaller number of 
problems in greater depth could be a solution that is closer 
to real research. For example, Felzien and Cooper (2005) 
developed an “Introduction to Research” course in which 
students especially valued the assignments to write grant 
proposals. Students said this was the toughest task, but that 
it helped them most to understand the biological research 
process. Demers (2003) developed a well-rounded, student-
driven, inquiry-directed course: It begins with epistemologi-
cal definitions, discusses science and nonscience, investigates 
ethics, and develops critical thinking, all with an overview of 
the basic model of the scientific process. Then, students as 
a group are asked to apply their newly learned awareness to 
the discussion of selected research problems. In our opinion, 
these approaches provide better intellectual preparation to 
learn about how to do science than attacking different bio-
logical problems each week.

“A lab is where you do science” (Thornton 1972). This 
view is often heralded in the literature, but we disagree. 
Rather, it is in the investigative mind where we do science; 
the laboratory offers only an opportunity to test scientific 
hypotheses through predictions (the products of the mental 
process that constitutes science). By contrast, most science 
curricula tend to focus on a single relationship between 
scientific knowledge and scientific method: the validity of 
scientific knowledge claims, judged exclusively in terms 
of their consistency, with observable evidence (Hodson 
1998). Most instructional laboratories incorporate only a 
few selected steps of inquiry even in hands-on experiments 
(Harker 1999). Harker argues that full participation in each 
step of the scientific method would be necessary instead, 
and he also presents a positive example from his microbial 
physiology course (Harker 1999; see box 1 for an example of 
our own approach to inquiry). 

Scientific literacy doesn’t necessarily call for deep under-
standing of difficult concepts such as the Nernst equations or 
the precise conditions of the Hardy-Weinberg equilibrium, 
but it does require a general understanding of basic scientific 
notions and the nature of scientific inquiry (Gross 2006). 
Becoming a successful researcher requires the learning of 
many skills. However, focusing on any special skill, whether 
quantitative or not (such as doing BLAST [basic local 
alignment search tool]  searches for comparing genomes), 
will provide only the tools required by technicians, not 
scientists. To be a successful researcher, the most important 
skill to have is the self-sufficient use of the scientific method. 
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Although this is one of the most difficult skills to acquire, 
university education tacitly expects students to pick it up 
on the fly, and it is also assumed that faculty mentoring will 
help this process. However, experience says otherwise. The 
scientific method is no trivial matter, and it appears that sci-
entists are less interested in it than are philosophers (Salmon 
1989, Norton 1998). Studies such as that by Lombrozo and 
colleagues (2006) indicate that students of various institu-
tions carry several misconceptions about science and lack a 
sufficient understanding of how scientific views differ from 
everyday opinions or even religious claims. 

The misrepresentation of science and the incorrect use 
of the scientific method has generated various myths and 
distorted views of science that are strongly rooted in the sci-
entific mindset of the 1960s and early 1970s (Hodson 1998). 
For example, experiments are often thought to be decisive 
and universally essential for testing hypotheses, whereas in 
reality, no theory-independent experiments are possible; the 
method of data collection used in testing a given hypothesis 
and also the formulation of the hypothesis itself are dictated 
by the very theory under review (Hodson 1988). There is 
ample evidence that the current distorted image of science to 

which students are exposed is one of the major reasons many 
students turn away from science at an early age (Holton 
1992). It is important to emphasize to students that every 
experiment is set up within a theoretical, procedural, and 
instrumental matrix, and it is this theoretical understanding 
that gives a purpose and a form to the experiments (Hodson 
1998)—in short, that an experiment outside the matrix of 
the scientific method is junk. It is also imperative to demon-
strate that alternative hypotheses can generate identical pre-
dictions, so there is no crucial experiment to decide between 
them, and that obtaining negative results and anomalous 
data is a natural feature of science. The challenge of science 
is exactly how to make progress despite these complexities 
and others. To face them, future researchers must be trained 
in a more targeted way. 

At the level of the “big picture,” such issues are commonly 
dealt with in the context of nature of science (NOS) dis-
cussions (McComas 1998, Abell and Lederman 2007). The 
NOS deals with an important, general overview of science 
education that we do not intend to address here. Instead, in 
the following sections, we hope to focus more concretely on 
the particular issue of why the quantitative approach is not 

Box 1. Is body weight inherited or acquired? An example of the use of the scientific method in a freshman biology class.

At East Tennessee State University, we have developed a lab exercise that not only addresses the understanding of an important bio-
logical concept but also specifically fosters the use of a particular aspect of the scientific method, the testing of multiple hypotheses 
(Johnson et al. 2006). 

Heritability is the proportion of phenotypic variance in a population that can be attributed to genetic differences among individuals 
rather than to environmental factors. The main steps we follow to introduce the concept are:

Stage 1: Turn the question (“Is weight/height inherited?”) into a series hypotheses and predictions (HW denotes heritability of 
weight). Then, discuss the differences between statistical and scientific null hypotheses.

H0: HW does not depend on the sex (it is not different for males and females)

HA: HW depends on the sex (it is different for males and females)

Using logic (such as inductive and deductive reasoning) as a tool, testable claims (predictions) are derived from these hypotheses:

P0: HW is not different for the two sexes

P1: HW is smaller for males

P2: HW is smaller for females

Note: We also create a similar hypothesis-prediction tree for the heritability of height. Our goal is to formulate at least one specific 
prediction derived from each hypothesis.

Stage 2: Experimental design.

What needs to be measured and how? What are the costs and benefits of different experimental approaches? A discussion is con-
ducted and a plan is formulated for selecting basic data for the investigation, using the weight of parents at the time when their  
age was similar to that of the student today. 

Stage 3: Data collection and processing.

We employ an online data collection form, previously developed for submitting data anonymously to a database. Data submission is 
homework and is voluntary. Data from several parallel classes and many years, accumulated in the database, are used for a regression 
analysis by the students. This requires the use of a preprogrammed Excel worksheet that contains explanations and instructions on 
how to process the data.

Stage 4: Evaluation of the results.

The results we obtained in a particular class are: male weight h2  = 86% and female weight h2 = 57% (Johnson et al. 2006).

We compare these results to our original hypotheses and predictions and conclude that the results supported P2 (and did not sup-
port P0 or P1). We carry out the same steps for the heritability of height and reach similar conclusions. We compare our results to  
the professional literature (Brown et al. 2003) and discuss the differences in methodology and results.

Stage 5: Planning for the next step of investigation.

Now, we discuss possible reasons for the significant difference between males and females. We construct new testable hypotheses for 
further studies (e.g., how peer pressure may influence teenage girls and boys to control their weight differently, etc.).
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identical to the scientific approach, and how mathematics 
and statistics can (and cannot) play an important role in 
teaching biology as science.

Can mathematics help students better  
understand biology?
Is focused quantitative training in biology a solution? Virtu-
ally all educators agree that our goal should be to develop 
students’ capacity for critical thinking and problem solving 
(Gross 2004, Abell and Lederman 2007). As a pioneering 
example, the University of Tennessee implemented a process 
called “multiple routes to quantitative literacy” (www.tiem.
utk.edu/bioed/), in which quantitative topics were intro-
duced to general biology courses, and math courses were 
redesigned to provide more varied and informative topics 
for students of the life sciences (Gross 2004). Including bio-
logical data and biology-loaded topics in math courses and 
quantitative training in biology courses has become a suc-
cessful and applauded recent trend, with many more recent 
examples, but there has been no comparable success in inte-
grating calculus and statistics with biology at the freshman 
level (Karsai and Knisley 2009). 

May (2004) pointed out some of the dangers practic-
ing biologists face when attempting to use computational 
methods without a good understanding of the underlying 
mathematics; there is a similar danger when mathematicians 
try to do research in biology. The interdisciplinary bridge 
between biology and chemistry, or biology and physics, has 
been smoother. Such projects may require collaborations 
from scientists with different backgrounds, yet they all use 
the same approach, or “language,” housed within the sci-
entific method they share. The interaction of mathematics 
with science has never been smooth (exemplified by the 
difference between Baconian and Cartesian science and 
the resulting fight between empiricism and rationalism in 
the 17th and 18th centuries). We believe this is because 
mathematics and science have significantly different roots 
and approaches. Mathematics is a language that develops 
its own internal structure through proving theorems. 
Mathematics and statistics do not use the methods of the 
empirical sciences. Understanding science is a first step in 
clarifying this; understanding the role of mathematics in 
science is a second.

Sometimes things get mixed up. For example, the testing 
of scientific or statistical hypotheses, although they may 
sound very similar, are in effect profoundly different activi-
ties, mainly because of the different epistemological ground-
work involved. Their differences can generate confusion, 
especially in inquiry-based labs or when biological examples 
are used in math classes. Students commonly fail to under-
stand the distinction between a scientific hypothesis and a 
statistical hypothesis (Maret and Ziemba 1997). In short, 
in math, the acceptance of a hypothesis implies that our 
conjecture is true by itself or within a well-calculated degree 
of certainty. By contrast, in science, the certainty obtained 
when a hypothesis is confirmed (its predictions “come 

out true”) is very different in quality: A positive outcome 
merely indicates that the available evidence is not against the 
hypothesis. To say more than that, we would need to com-
pare predictions from various alternative hypotheses.

There are further issues to consider here. Hypothetico-
deductivism, often taught as the “right way” to do science, 
maintains that the task of scientific theories is to explain and 
predict facts about observed data. We rarely explain to stu-
dents that such empirical adequacy is insufficient by itself, 
or that consistency with data and the validity of a hypothesis 
do not grant “truth” status to a theory. This important mat-
ter is sometimes overlooked even by some scientists, who as 
individuals fight fervently for their pet theories (Mitroff and 
Mason 1974). In reality, consistency with data signifies that 
the theory may be correct, but numerous other theories may 
also apply (a classic source is Duhem 1962). 

Next, a failure to draw a distinction between data and 
phenomena is particularly deceptive (Haig 1996). In sci-
ence, it is phenomena and not the bare data that we want 
to decipher. Haig (1996) asserts: “Phenomena are relatively 
stable, recurrent general features of the world that we seek to 
explain…. Data, by contrast, are idiosyncratic to particular 
investigative contexts. They are not as stable and general as 
phenomena.” Data are important, of course, because they 
serve as evidence for the phenomena. When we want to 
render phenomena from data, we often employ some kind 
of data-processing methods such as provided by statisti-
cal tools. However, we should be aware that these methods 
help detection, but not explanation (Haig 1996, Maret and 
Ziemba 1997). Therefore, implementing statistics in biology 
courses without understanding the scientific method actu-
ally misrepresents how science works. Paradoxically, this 
danger is even higher when a statistical course uses genu-
ine biological data, because although the students obtain 
the vital statistical skills, the lively essence of the scientific 
knowledge process is easy to miss, since data are taken at face 
value, and are taken as “given.”

Similar problems occur also when mathematics (calcu-
lus, for example) is integrated into biology and math takes 
over the course. If the course changes track, concentrating 
on mathematical tractability and skill training instead of 
scientific meaning, it will not progress in the same way that 
a typical science course would; that is, through the study of 
alternative hypotheses or learning about historical shifts of 
scientific paradigms. For example, the well-known Lotka-
Volterra predator-prey model generates regular oscillations 
in population size. The model is typically considered one 
of the most important mathematical equations in biology 
(Jungck 1997), although the system is known to be math-
ematically unstable against modifications, spatial variations, 
and stochasticity, and is therefore unlikely to be biologically 
relevant (Murray 2002). Beyond doubt, the Lotka-Volterra 
equations provided very important inspirations to ecol-
ogy and other fields of science, such as complexity science. 
However, there are virtually no biological data that fit the 
predictions of this model. The biggest problem, nevertheless, 
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is not the lack of such predictive value but the biologically 
unacceptable assumptions behind the model. The Lotka-
Volterra model is on the basis of assumptions that do not 
hold in biology, such as aggregated food resources. In 
engineering and the computational sciences, trusted master 
models (such as the Hamiltonian or Maxwell equations) are 
available, and the question is how to best exploit them. A 
similar approach is misinformative in biology, where such 
master models are not present, and analysis is subordinate to 
discovery—an integral part of the knowledge process. Even 
well-known constructs such as the Lotka-Volterra model 
cannot be used as master equations: Tweaking and twisting 
them to give better predictions, as in engineering problems, 
does not present as much new insight as dealing with the 
phenomena and trying to build better models.

We think that the problems mentioned above are rooted 
in the epistemological differences between the fields of 
mathematics and biology, and that these differences need to 
be exposed. In mathematics, theories are laid out explicitly 
and in advance, as in the theory of equations or the theory 
of complex variables. Results are obtained analytically; that 
is, by proving properties. The model’s description is typically 
complete and the standard of correctness is mathematical 
proof. Biology obtains results in a very different way. Here, 
just as everywhere in science, the basic mental construct 
takes the form of a hypothesis. Hypotheses cannot be proven 
or disproven, only supported or unsupported through tests 
of their predictions. Theoretical and computational models 
(in the same way as laboratory experiments or observa-
tions) can serve as additional tools to test the predictions 
of a hypothesis and to perform limited experiments in 
the sense of “what if ” scenarios. Besides, in biological 
investigations, simulations are often preferred to formal 
models, because their assumptions can be more realistic 
(e.g., for prey-predation interaction, local models typical in 
simulations can be favored over aggregate models typical in 
equations). Models in biology are seldom proved mathemat-
ically; instead, model predictions are compared with natural 
findings, and sensitivity analyses check how the model varies 
with a few selected parameters. 

In other words, instead of looking for a complete proof, 
the biologist marshals evidence to present the claim of a 
hypothesis beyond reasonable doubt. A hypothesis that is 
well supported and whose alternatives do not receive supe-
rior evidential support may eventually become a theory. 
For example, evolution is a successful theory, but there is 
no way to prove that the theory of evolution is correct in a 
mathematical sense; however, the scientific method does not 
require that. Focusing on formalism, truth, and proof thus 
misinforms students about science.

Philosophy of science, modeling, and simulations
Clarifying science, and clarifying the role of math in science, 
are important steps. But there may be more to come. Model-
ing and simulation might offer a farther step forward, while 
bearing on the former two. To see how, consider that Hodson 

(1988) urged us to change our traditional view: “In the old 
stereotyped school curriculum view of science, scientific 
knowledge exists ‘out there’ and scientists carefully, system-
atically and exhaustively collect information that reveals it.” 
The hypothetico-deductive method is still heralded as the 
main model for science, and other approaches such as the 
grounded theory (Glaser and Strauss 1967) are not even 
mentioned, although they have been around for decades. 
“Logico-deductive theorizing,” as Glaser and Strauss (1967) 
pointed out, exaggerates the significance of theory testing 
(which is not concerned with the theory’s origin or develop-
ment, only with its validation) and denies the role of inductive 
reasoning. However, in reality, most hypotheses and theories 
tend to be underdeveloped, and as a consequence research-
ers usually submit “low-content” theories to early empirical 
testing (Haig 1996). The presupposition of the hypothetico-
deductive method, that theories arise in a full-blown form, 
should be shifted to a more dynamic perspective on theory 
construction, in which a theory becomes an ever-developing 
entity, interwoven with data and hypotheses.

When doing research, we often do not possess actual 
knowledge of the causal mechanisms that we abductively 
probe. Constructing models by analogy, drawing on 
mechanisms we already know, helps researchers construct 
new theories. Reality is commonly simulated in a concrete 
visual image, such as a stock-and-flow model, where the 
causal mechanisms are drawn from the domain of previ-
ous experience in other disciplines. Biology in particular 
uses many mechanical and electric circuit analogs. This 
kind of “abductive explanatory inferentialism” suggests 
that the theory of the scientific method is centrally 
concerned with generating theories in a “backward” sense. 
The approach is also very close to how scientists gener-
ate models and work with them in practice, in terms of 
what philosophers have come to call “inference to the best 
explanation” (Harman 1965).

We can safely predict that the strongest effect of math 
on biology and biology education will be the extensive use 
of models and simulations, as has happened in other fields 
of science (Clement and Rea-Ramirez 2008). Since 1998, 
studies using models have increased more than fourfold in 
scientific literature (Keeling and Rohani 2007). Statistics 
continues to have an important role in providing tools for 
testing predictions and constructing statistical descrip-
tions, but on the other hand, the role of mathematical and 
computational modeling becomes ever stronger and will 
infuse biology in all phases, from hypothesis abduction to 
the testing of alternative “what if” scenarios. Although more 
formal models (e.g., differential equations) will continue to 
inspire quantitative thinking, we foresee that their roles will 
be increasingly augmented and partly replaced by simula-
tions. Computer simulations can be used as effective tools 
for collaborative research and education as well, and many 
biology researchers and students can access these tools today 
without extensive special mathematical training. Collabora-
tion between a mathematician and a biologist through a 
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simulation platform can help a project stay focused as a 
genuinely scientific enterprise that uses the full power of the 
scientific method. In such a system, the biologist can keep 
track of biological assumptions, and the mathematician can 
help the biologist avoid using naive math, thus inspiring 
the biologist to understand the importance of embedded 
assumptions (such as the assumptions about distributions, 
randomness, and so on; Brent 2004, May 2004).  

We believe that simulation platforms using individual-
based approaches especially will provide excellent educational 
tools for biology. Today, integrated platforms and informa-
tion systems such as Visual Cell, the Virtual Physiological 
Human, and others provide templates where data, models, 
simulations, theories, mechanisms, and qualitative and 
quantitative knowledge are represented in a uniform and 
transparent fashion that makes it easy to experiment, form, 
and evaluate models and alternative hypotheses (see Sauro 
2003 for earlier examples). This integration is highly instruc-
tive as it suggests a style for doing science by merging several 
aspects of the scientific method into a uniform representa-
tional system while perhaps also serving as a useful template 
for science education. Although some of these integrated 
research tools are not easily accessible to all students, many 
open-source or commercial software platforms exist already 
(e.g., Netlogo, or Starlogo TNG for agent-based modeling, 
and Sage and Vensim for mathematical modeling). Using 
these accessible simulation platforms, we managed to suc-
cessfully engage freshman biology students with minimal 
math skills both in classroom exercises and in interdisciplin-
ary research that involved strong mathematical components 
(Johnson et al. 2009).

Math and mathematics education can also gain from 
the infusion of biology, and modeling or simulation 
can be of help there, too. There is already a long list of 
mathematics problems that have arisen from biological 
studies, ranging from the age structure of stable popula-
tions to qualitative calculus, which applies formalism to 
incomplete information (Kuipers 1994). The teaching 
of the concept of “rate of change” has traditionally been 
founded in analytical geometry, focusing on parabolas 
and ballistics. In biology, new bases can be found for the 
same concepts, such as muscle tension or proprioception 
in locomotion (Brent 2004). We hope that new areas at the 
crossroads of biology and math will soon develop to a level 
where biologists can use them intuitively and they can also 
be incorporated into education. To make it useful for sci-
ence and the scientist, an integrated or infused curriculum 
should be based on a solid understanding of the scientific 
method. We envision that successful programs in research 
and education in the United States and worldwide will 
promulgate the scientific method to stress that biology is 
science, and at the same time stimulate the use of common 
simulation platforms to enhance collaboration between 
mathematicians and biologists in their efforts to generate, 
test, and analyze alternative hypotheses—and to educate a 
skilled workforce. 
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