
AMICABLE PAIRS AND ALIQUOT CYCLES FOR

ELLIPTIC CURVES OVER NUMBER FIELDS

JIM BROWN, DAVID HERAS, KEVIN JAMES, RODNEY KEATON,
AND ANDREW QIAN

Abstract. Let E/Q be an elliptic curve. Silverman and Stange de-
fine primes p and q to be an elliptic amicable pair if #E(Fp) = q and
#E(Fq) = p. More generally, they define the notion of aliquot cycles
for elliptic curves. Here we study the same notion in the case that the
elliptic curve is defined over a number field K. We focus on proving the
existence of an elliptic curve E/K with aliquot cycle (p1, . . . , pn) where
the pi are primes of K satisfying mild conditions.

1. Introduction

The notion of amicable pairs of integers has been around since at least the
Pythagoreans. Recall a pair of positive integers (m,n) is referred to as an
amicable pair if the sum of the proper divisors of m is equal to n and the sum
of the proper divisors of n is m. The first such pair is given by (220, 284).
There are many related notions to amicable numbers in elementary number
theory, but this paper is concerned with the notion of amicable pairs for
elliptic curves as defined by Silverman and Stange ([4]). Let K be a number
field and E/K an elliptic curve. We say a pair of primes (p, q) of OK form
an amicable pair for E if

#E(Fp) = N q

#E(Fq) = N p

where we use N to denote the norm from K to Q and where Fp denotes
OK/p. More generally, one can define an elliptic aliquot cycle as a collection
of primes (p1, . . . , pn) satisfying

#E(Fpi) = N pi+1 for i = 1, . . . , n− 1 and(1)

#E(Fpn) = N p1.

Aliquot cycles for elliptic curves defined over Q were studied extensively in
[4]. Given an elliptic curve E/Q they provide asymptotics for the function
QE(X) that counts the number of aliquot cycles (p1, . . . , pn) with p1 =
min pi and p1 ≤ X. They also show that for any positive integer n there
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exists an elliptic curve E/Q that has an aliquot cycle of length n. This
paper focuses on this existence result for elliptic curves over number fields.

We begin by showing that if we allow primes of degree one we recover
that given any integer n and any number field K, there is an elliptic curve
E/K that has an aliquot cycle of length n. The proof follows along the same
line as that given in [4] with the only added input the distribution of primes
of degree 1. However, if we restrict to the case where at least one of the
primes is required to have degree at least 2 things are very different. This
is to be expected as the density of primes of degree greater than 1 is much
thinner than that of degree 1 primes. We note that any sequence of primes
with a common norm forms an aliquot cycle (see the discussion immediately
following Theorem 2.4) and thus it is of interest to focus on elliptic aliquot
cycles involving more than one norm. We prove that the only possible such
sequences of primes (p1, . . . , pn) with equal degree f > 1 is for n = f = 2
and p1 | 2, p2 | 3. We then study the case of primes with unequal degrees
possibly bigger than 1. This case is interesting in that it is possible to have
such aliquot cycles. In fact, we give a criterion for a sequence of primes to
be an elliptic aliquot cycle (see Theorem 2.4). We also provide an algorithm
for constructing such an elliptic curve and give two explicit examples.

Finally, we conclude with a section describing some potential future re-
search expanding these notions to hyperelliptic curves.

2. Existence of Aliquot Cycles for Elliptic Curves over
Number Fields

We first establish necessary conditions for a sequence p1, p2, . . . , pn of
primes of OK to be an aliquot cycle for some elliptic curve E/K. First,
note that the Hasse bound tells us that if our sequence is to be an elliptic
aliquot cycle then the norms of consecutive primes in our sequence must be
close together. In fact, if p and q are primes appearing consecutively in the
sequence (where we consider pn and p1 as appearing consecutively), then
the Hasse bound requires that

(2) |N p + 1−N q| ≤ 2
√

N p.

We recall the following consequence of Deuring’s theorem due to Schoof
which further restricts which sequences of primes can be elliptic aliquot cy-
cles. The statement given here is a special case of [3, Theorem 4.2] combined
with Mihăilescu’s Theorem (Catalan’s conjecture) [2].

Theorem 2.1 (Deuring-Schoof). Suppose that K is a number field with
ring of integers OK and that p and q are primes of OK lying above the
rational primes p and q respectively. There is an elliptic curve E/Fp with
#E(Fp) = N q if and only if one of the following conditions holds.

(1) (N p,N q− 1) = 1 and |N p + 1−N q| ≤ 2
√

N p,
(2) N p = p2r with p 6≡ 1 (mod 3) and Nq = p2r ± pr + 1,
(3) N p = 32r+1 and N q = 32r+1 ± 3r+1 + 1,
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(4) N p = 22r+1 and N q = 22r+1 ± 2r+1 + 1,
(5) (N p,N q) = (2r − 1, 2r), ((2r − 1)2, 22r), or (22r, (2r − 1)2) provided

that 2r − 1 is prime.
(6) (N p,N q) =(2,3), (4,9), (9,4), (8,9), (81,64), (64,81), (4,5), (16,17),

(256,257), (65536,65537), (16,25), (256,289), (65536,66049),
(655362, 655372), (25,16), (289,256), (66049,65536), or
(655372, 655362).

(7) (N p,N q) = (22
k
, 22

k
+ 1), ((22

k
+ 1)2, 22

k+1
), or (22

k+1
, (22

k
+ 1)2)

provided 22
k

+ 1 is prime.

Definition 2.2. A collection of primes p1, . . . , pn is a Deuring n-cycle if
it has the property that each pair of primes appearing consecutively in the
sequence (where we include (pn, p1) as consecutive primes from the sequence)
satisfies one of the conditions of Theorem 2.1.

Remark 2.3. Suppose that we are given a sequence of primes in some
number field K and we wish to know if it is a Deuring n-cycle. Let p and q
be consecutive primes of the sequence lying above rational primes p and q
respectively.

(1) If p, q ≥ 5, then one needs only to consider conditions 1 and 2.
(2) If p, q ≥ 3, then one needs only to consider conditions 1, 2 and 3.
(3) Condition 7 relies on the existence of Fermat primes and is likely

superfluous, since we have included the contributions of this form
from the known Fermat primes in condition 6.

This gives the following criterion for a sequence of primes to be an elliptic
aliquot cycle.

Theorem 2.4. Suppose that K is a number field with ring of integers OK .
A sequence p1, . . . , pn of primes of OK is an aliquot cycle for some elliptic
curve E/K if and only if it is a Deuring n-cycle. Further if the sequence is
a Deuring n-cycle, then the sequence is an aliquot cycle for infinitely many
elliptic curves E/K.

Proof. Suppose p1, . . . , pn is an aliquot cycle for some elliptic curve E/K.
Then, it follows immediately from Theorem 2.1 that p1, . . . , pn is a Deuring
n-cycle.

Now, suppose that p1, . . . , pn is a Deuring n-cycle. Under our hypothesis,
Theorem 2.1 guarantees for each 1 ≤ i ≤ n−1 the existence of a curve Ei/Fpi

with #E(Fpi) = N pi+1 and the existence of a curve En/Fpn with #E(Fpn) =
N p1. Thus we can use the Chinese remainder theorem to construct an
elliptic curve E/K whose coefficients are congruent to those of Ei modulo
pi for 1 ≤ i ≤ n and the sequence p1, . . . , pn will be an aliquot cycle for any
curve which has coefficients congruent modulo p1 · · · · · pn to those of E. �

We are now in a position to prove the existence of aliquot sequences
in any number field K. We first note that if p1, . . . , pn is a sequence of
primes of OK with a common norm, then condition (1) of Theorem 2.1 is
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met and thus there are infinitely many elliptic curves E/K for which the
sequence is aliquot. Henceforth, we will focus our search on elliptic aliquot
cycles involving more than one norm. Note for such an aliquot cycle, we
can extend the cycle by adding primes of a common norm. We should also
note that primes of a common norm may appear nonconsecutively in an
aliquot cycle. This will give us more freedom in satisfying the conditions of
Theorem 2.4.

The following theorem essentially follows from the arguments given in [4].
We include it with proof for the sake of completeness.

Theorem 2.5. Given a number field K and a natural number n ∈ N, there
are infinitely many length n sequences of primes p1, p2, . . . , pn ⊆ OK with
pairwise distinct norms and for each such sequence infinitely many elliptic
curves E satisfying E(Fpi) = N pi+1 for 1 ≤ i ≤ n− 1 and E(Fpn) = N p1.

Proof. Let K be any number field and let n ∈ N. In light of Theorem 2.4,
it will be sufficient to show that there are infinitely many Deuring n-cycles
with pairwise distinct norms. This is guaranteed by the Chebotarev density
theorem. To see this note that if for some n there were no sequence of degree
1 prime ideals with pairwise distinct norms p1, p2, . . . , pn ⊆ OK satisfying
the condition

(3) N p1 < N p2 < · · · < N pn < N p1 + 2
√

N p1,

then the rational primes up to any bound X which split completely in OK

would be less numerous than n times the number of squares up to X which
would violate the Chebotarev theorem. Now note that if condition (3) is
satisfied for a sequence of degree one primes with pairwise distinct norms,
then condition (1) of Theorem 2.1 is satisfied and the sequence is indeed a
Deuring n-cycle. Thus, we are guaranteed infinitely many length n sequences
of prime ideals p1, p2, . . . , pn ⊆ OK satisfying the hypotheses of Theorem 2.4
and the theorem follows. �

We note that the aliquot cycles given by this technique may all be made
up of primes of degree 1 and thus are not much different than the sequences
exhibited in [4]. It is thus interesting to search for elliptic curves E/K which
have aliquot cycles involving primes of degree greater than 1.

3. Amicable pairs of primes of degree greater than 1

We saw in the previous section that the behavior of degree one primes over
number fields mirrors that of the case over Q already studied by Silverman-
Stange ([4]). In this section we see the situation is much different if we
consider primes of degree greater than one. We begin with the following
result.

Theorem 3.1. Let E/K be an elliptic curve. Let p and q be primes of the
same degree f > 1 but with different norms. Then (p, q) forms an amicable
pair if and only if [K : Q] is even and (N p,N q) = (4, 9).
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Proof. Let E/K be an elliptic curve. Let p and q be primes of degree f ≥ 2
and with differing norms. Suppose they do form an amicable pair. Let p
be the rational prime so that p | p and q the rational prime so that q | q.
Assume without loss of generality that p < q. We have via Hasse’s bound
that

|qf − pf − 1| = |#E(Fp)− pf − 1| ≤ 2pf/2.

Note we are essentially measuring the distance between the prime powers
pf and qf . It is now a simple matter to show if f ≥ 2 they cannot be this
close together unless p = 2, q = 3 and f = 2.

First, suppose that p = 2 and q = 3 and f > 2. Then we have

|3f − 2f − 1| = |(2 + 1)f − 2f − 1|∣∣∣∣∣∣
f∑

j=0

(
f

j

)
2f−j − 2f − 1

∣∣∣∣∣∣
≥ f2f−1

> 2 · 2f/2

where the last inequality follows from the fact that f > 2. Thus, such a
(p, q) cannot form an amicable pair, since it violates the Hasse bound (2).

Now suppose that q > p > 2. The value |qf − pf − 1| is minimized when
q = p+ 2. Arguing as above we have

|(p+ 2)f − pf − 1| > 2fpf−1

> 2pf/2

where we have used that f ≥ 2. This clearly violates the Hasse bound (2).
Thus the only possibility for (p, q) to be amicable is if (N p,N q) = (4, 9).

Finally, if (N p,N q) = (4, 9), then condition (6) of Theorem 2.1 is satis-
fied and (p, q) is thus a Deruing 2-cycle. The theorem now follows form
Theorem 2.4. �

We have the following example of such a number field K.

Example 3.2. Let K = Q(
√

5). One has that 2 and 3 are both inert in
this field. Set p2 = 2OK and p3 = 3OK . Then N p2 = 22 and N p3 = 32.
We use Sage ([5]) to see that the elliptic curve E2/K : y2 + y = x3 satisfies
#E2(Fp2) = 32 and E3/K : y2 = x3 + 2

√
5x satisfies #E3(Fp3) = 22.

We use the Chinese remainder theorem to combine these curves to form
E/K : y2 + 3y = x3 + 2

√
5x. This curve has (p2, p3) as an amicable pair.

Our next step is to consider the case where p and q are primes of degrees
e and f respectively with e 6= f . This naturally leads to the question: are
there any number fields K that have Deuring n-cycles for n > 2? In the
next section we address this question by giving a method for constructing
such number fields given rational prime powers satisfying mild conditions.
We also give some specific examples.
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4. Existence of number fields with Deuring cycles

In this section we give a method for constructing examples of number
fields K that have Deuring cycles.

Definition 4.1. A sequence of rational prime powers pf11 , . . . , p
fn
n is a po-

tential Deuring n-cycle provided that if we could find a number field K and

a sequence of primes p1, . . . , pn ⊆ OK with N pi = pfii for 1 ≤ i ≤ n this
sequence would be a Deuring n-cycle.

We will show that given a potential Deuring n-cycle where prime powers
are allowed to be repeated a limited number of times, there is a number
field K and a Deuring n-cycle of primes in OK with norms given by the
prime powers in the given sequence. We construct two examples. For the
first we construct a specific number field K, a Deuring 2-cycle (p, q), and
an elliptic curve E/K for which (p, q) forms an amicable pair and for the
second we give a specific number field K, a Deuring 10-cycle, and an elliptic
curve E/K for which the Deuring 10-cycle forms an aliquot cycle.

We will make use of the following well-known theorem.

Theorem 4.2. Let K = Q(α) where α is a root of an irreducible polynomial
f(x) ∈ Z[x]. Let p be a prime with p - [OK : Z[α]]. If f(x) has irreducible
factorization in Fp[x] given by f(x) = g1(x) · · · gk(x) then

pOK =

k∏
i=1

〈p, gi(α)〉.

Using this theorem, we have the following method for constructing an
appropriate number field.

Corollary 4.3. Let pf11 , . . . , p
fn
n be a potential Deuring n-cycle with the

added property that the number of occurrences of any prime power pf does
not exceed the number of monic irreducible polynomials of degree f over Fp.
Then there exists a number field K and primes p1, . . . , pn ⊂ OK so that

N pi = pfii , i.e., (p1, . . . , pn) is a Deuring n-cycle for K.

Proof. Let pf11 , . . . , p
fn
n be a potential Deuring n-cycle with the added prop-

erty that the number of occurrences of any prime power pf in the sequence
does not exceed the number of monic irreducible polynomials of degree f
over Fp. Let us denote the distinct primes in the sequence as q1, . . . , qm and

let us denote the not necessarily distinct powers of qi by q
fi,1
i , . . . , q

fi,ki
i .

For each 1 ≤ i ≤ m and 1 ≤ j ≤ ki, let hi,j(x) ∈ Fqi [x] be an irreducible
monic polynomial of degree fi,j chosen so that hi,1, . . . , hi,ki are distinct.

Note that this can be done since we limit the number of occurrences of q
fi,j
i

in our sequence to less than or equal to the number of monic irreducible
polynomials in Fqi [x] of degree fi,j . Now choose D > 1 large enough so that
for each 1 ≤ i ≤ m we can choose a monic irreducible polynomial gi ∈ Fqi [x]

of degree D −
∑ki

j=1 fi,j which is distinct from hi,1, . . . , hi,ki .
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Now, select any prime r which does not divide any member of our se-
quence and a monic irreducible polynomial k(x) ∈ Fr[x] of degree D. Ap-
ply the Chinese remainder theorem to the coefficients of the polynomi-

als gi(x)
∏ki

j=1 hi,j(x) (1 ≤ i ≤ m) and k(x) to construct a polynomial

F (x) ∈ Z[x] so that F (x) ≡ gi(x)
∏ki

j=1 hi,j(x) (mod qi) for each 1 ≤ i ≤ m

and F (x) ≡ k(x) (mod r). Since k(x) is irreducible modulo r, we must have
F (x) is irreducible in Q[x]. Let α ∈ Q be a root of F (x) and set K = Q(α).

It only remains to show that qi - [OK : Z[α]] so that we can apply Theorem
4.2 and we will be done. Recall that [OK : Z[α]] | disc(F ), so it is enough
to show qi - disc(F ) for 1 ≤ i ≤ m. Since for each 1 ≤ i ≤ m, Fqi is
perfect and since the irreducible polynomials gi, hi,1, . . . , hi,ki are distinct, it

follows that gi(x)
∏ki

j=1 hi,j(x) has D distinct roots in Fqi , say αi,1, . . . , αi,D.
Further since the discriminant of a polynomial can be expressed in terms of
its roots, we have by our construction of F that

disc(F ) ≡ disc

gi(x)

ki∏
j=1

hi,j(x)

 (mod qi)

=
∏
i<j

(αi − αj)
2 6≡ 0 (mod qi).

Thus, we have the result. �

Once one has found a potential Deuring n-cycle of prime powers satisfying
the hypothesis of Corollary 4.3, it is fairly easy to construct a suitable field
K using the method of our proof. We give two explicit examples.

Example 4.4. Let p1 = 13, f1 = 3, p2 = 47, and f2 = 2. Observe that

|472 − 133 − 1| = 11 ≤ 2 · 133/2

|133 − 472 − 1| = 13 ≤ 2 · 47,

(132, 472 − 1) = 1 and (472, 132 − 1) = 1,

so this is a potential Deuring 2-cycle. Let f(x) = x3 − 52x+ 329 and K =
Q(α) where α is a root of f(x). Let p13 = 〈13, α3+4〉 and p47 = 〈47, α2−5〉.
One uses Sage to find

E13/K : y2 = x3 + (10α2 + 9α+ 12)x+ (9α2 + 11α+ 9)

satisfies #E13(Fp13) = 472 and

E47/K : y2 = x3 + (46α+ 11)x+ (20α+ 37)

satisfies #E47(Fp47) = 133. One then applies the Chinese remainder theorem
to these curves to find E/K given by

E/K : y2 = x3 + (517α2 + 516α+ 246)x+ (282α2 + 349α+ 178)

is an elliptic curve that satisfies #E(Fp1) = N p2 and #E(Fp2) = N p1 as
desired.
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We also provide an example of an aliquot cycle of greater length.

Example 4.5. Consider the cycle given by (22, 3, 5, 7, 11, 13, 11, 7, 5, 3). One
easily checks this is a potential Deuring cycle. Following the algorithm in
the proof of Corollary 4.3 one sees that the number field given by Q(α) with
α a root of f(x) = x2 + x+ 195195 realizes (22, 3, 5, 7, 11, 13, 11, 7, 5, 3) as a
Deuring 10-cycle. One then uses MAGMA [1] to show E/K given by

E/K : y2 + αy = x3 + 100010x2 + (98α+ 12552)x− (716α+ 10004)

has (22, 3, 5, 7, 11, 13, 11, 7, 5, 3) as an aliquot cycle.

Remark 4.6. We recall that Legendre conjectured that there is always
a prime between consecutive integer squares and computational evidence
seems to suggest more. It in fact seems reasonable to conjecture that there
are as many as

√
n primes between n2 and (n + 1)2. Based on this it

seems reasonable that there may always be a prime between x = (
√
x)2

and x + 2
√
x = (

√
x + 1)2 − 1. If so, one could construct an arbitrarily

long sequence of prime powers starting at any prime power which could be
realized as the norm sequence of a Deuring cycle of primes of some number
field K constructed as above. To find such a sequence of prime powers one
simply continues to select prime powers each within twice the square root
of the previous one until satisfied. One then repeats the sequence in reverse
being careful not to reuse 4 if it was used before until reaching the beginning
again.

5. Future directions of research: hyperelliptic curves

If one wishes to generalize the notion of amicable pairs for elliptic curves,
a very natural object to look at is a hyperelliptic curve.

Definition 5.1. Let K be a field. A hyperelliptic curve C/K of genus g ≥ 1
is a non-singular plane curve of the form,

C : y2 + h(x)y = f(x)

where h ∈ K[x] of degree at most g and f ∈ K[x] is monic of degree 2g+ 1.

Note that if char(K) 6= 2 one can perform a change of variables to realize
the curve in the form

y2 = f(x)

for f ∈ K[x] monic of degree 2g + 1.
There are two natural ways one can define amicable pairs in this context.

One is to consider points on the curve C. In this case, we want two primes
p and q of good reduction so that

#C(Fq) = p,

#C(Fp) = q.

Such pairs do exist. The difficulty is that for genus g > 1 the set of
points C(Fp) does not form a group, so one loses many of the tools used
by Silverman-Stange to study amicable pairs.
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Example 5.2. Let C be the genus 2 hyperelliptic curve given by y2 =
x5 + 2x4 + x2 + x+ 7. Then we have the following pairs of primes (p, q) for
2 ≤ p < q ≤ 1000 that satisfy #C(Fp) = q,#C(Fq) = p:

(2, 3), (37, 41), (311, 331), (353, 401), (631, 661), (673, 677), (733, 743), (881, 919).

Example 5.3. Let C be the genus 2 hyperelliptic curve given by y2 = x5 +
x+1. Then we have the following pairs of primes (p, q) for 2 ≤ p < q ≤ 1000
that satisfy #C(Fp) = q,#C(Fq) = p:

(41, 47), (83, 109), (97, 107), (139, 151), (263, 293), (359, 383), (421, 457), (431, 463),

(523, 557), (733, 769), (743, 757), (911, 937), (977, 983).

In future work we plan on investigating the number of such pairs for
genus 2 hyperelliptic curves and determining if one can obtain conjectural
asymptotic formulas analogous to those given in Silverman-Stange.

The second way is to consider the Jacobian of the curve C. Every hyperel-
liptic curve has an associated geometric object called its Jacobian, denoted
JacC . The Jacobian is a group, so we have some hope of using similar
techniques to Silverman-Stange here.

The following is the statement of Hasse’s theorem for hyperelliptic curves.
Elliptic curves have genus 1 and notice the corollary below gives the Hasse
interval when g = 1.

Corollary 5.4. Let C/Fp be a hyperelliptic curve of genus g. Then,

(pn/2 − 1)2g ≤ # JacC(Fpn) ≤ (pn/2 + 1)2g.

Remark 5.5. For elliptic curves, the Jacobian JacE(K) is isomorphic to
the group defined on the set E(K). Thus, both potential generalizations
specialize to the correct notion in the case of elliptic curves.

Theorem 5.6. Let C be a hyperelliptic curve of genus g > 1 defined over Q
with good reduction at primes p and q. Then, the statements # JacC(Fp) = q
and # JacC(Fq) = p can only happen in the following cases:

(1) g = 2: (p, q) = (2, 3) or (p, q) = (3, 5),
(2) g ≥ 3: (p, q) = (2, 3).

Proof. Suppose we have such a pair p and q. We apply the Hasse bound
given above with n = 1 to obtain equations

(
√
q − 1)g ≤ √p ≤ (

√
q + 1)g

(
√
p− 1)g ≤ √q ≤ (

√
p+ 1)g.

We have from this that

(
√
p− 1)g − 1 ≤ √q − 1.

It follows that we have

((
√
p− 1)g − 1)g ≤ (

√
q − 1)g ≤ √p.
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Consider the polynomial fg(x) = ((x− 1)g − 1)g − x. Our above inequality
implies that the only p for which p can be part of the pair (p, q) occurs when
fg(
√
p) ≤ 0. One easily sees that fg(x) ≥ 0 for all x ≥ 2.62 and all g ≥ 2.

Thus we have that p must be less than 7. Since the same argument works
for q we have reduced to the possibilities that p, q ∈ {2, 3, 5}. Now it is a
simple case of plugging in these primes to determine which ones work. �
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