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Abstract

A pebble distribution places a nonnegative number of pebbles on the vertices of

a graph G. In graph rubbling, the pebbles can be redistributed using pebbling

and rubbling moves, typically with the goal of reaching some target pebble

distribution. In graph pebbling, only the pebbling move is allowed. The cover

pebbling number is the smallest k such that from any initial distribution of

k pebbles, it is possible that after a series of pebbling moves there is at least

one pebble on every vertex of G. The Cover Pebbling Theorem asserts that

to determine the cover pebbling number of a graph, it is sufficient to consider

the pebbling distributions that initially place all pebbles on a single vertex.

In this paper, we prove a rubbling analogue of the Cover Pebbling Theorem,

providing an answer to an open question of Belford and Sieben (Discrete Math.

309 (2009) 3426-3446). In addition, we prove a stronger version of the Cover

Rubbling Theorem for trees.

1. Introduction

Graph pebbling was originally proposed by Lagarias and Saks as a technique

for solving a problem in number theory (see [7]). This problem was solved

by Chung in [3], which is the first publication on graph pebbling. Since its

introduction, graph pebbling and its variants have become a quite prolific area

of graph theory. For a good overview of the history of graph pebbling and some

of its variants, the reader is referred to [7]. Graph rubbling was introduced 20

years later in [2] and, to date, has remained relatively unstudied as compared

to graph pebbling.
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Let G be a connected simple graph with vertex set V . A pebble distribution

on G is a function f that maps V to the nonnegative integers, that is, f : V →
Z≥0. This function is viewed as a placement of f(v) ≥ 0 pebbles on each vertex

v of V . If f(v) ≥ 1 for a vertex v, then we say that v is a pebbled vertex. The

size of f is |f | =
∑

v∈V f(v). Graph pebbling and graph rubbling are methods

of moving the pebbles of a pebble distribution to specified locations using the

following moves. The pebbling move, denoted p(v → u), removes two pebbles

from a vertex v and places one pebble on an adjacent vertex u. That is, for a

vertex v with f(v) ≥ 2 and u a neighbor of v, the pebbling move produces a new

distribution f ′ given by f ′(v) = f(v) − 2, f ′(u) = f(u) + 1, and f ′(x) = f(x)

for all other vertices x. The rubbling move, denoted r(u, v → x), removes one

pebble from a vertex u and one pebble from a vertex v and places one pebble

on a common neighbor x of u and v. In other words, for two pebbled vertices

u and v, and x adjacent to both u and v, the rubbling move produces a new

distribution f ′ given by f ′(u) = f(u) − 1, f ′(v) = f(v) − 1, f ′(x) = f(x) + 1,

and f ′(y) = f(y) for all other vertices y. Since each move requires one pebble

to be discarded and another to be moved to a new vertex, graph pebbling and

graph rubbling provide models for transporting consumable products.

If a pebble can be placed on a vertex v from an initial pebble distribution

f after a sequence of pebbling and rubbling moves, then we say that v can be

reached from f . Two major reachability questions in graph pebbling involve

the pebbling number and cover pebbling number. The pebbling number of G

is the smallest integer k such that from any initial distribution of k pebbles, it

is possible by a sequence of pebbling moves to place a pebble on any specified

vertex of G. The cover pebbling number of G is the smallest k such that from any

initial distribution of k pebbles, it is possible after a series of pebbling moves

that every vertex of G has at least one pebble. The cover rubbling number is

defined similarly while allowing series of pebbling and rubbling moves. The

cover pebbling number was originally introduced in [4] and studied in [2], for

example.

Note that in covering, the desired goal is to reach every vertex in G such

that after a sequence of moves, every vertex of G is pebbled. In other words,

the resulting configuration is a cover where every vertex has at least one pebble.

There are also variants of cover pebbling and cover rubbling which seek to reach

(leave a pebble on) the vertices of a subset satisfying certain properties. For

example, in [8] the authors seek to reach a vertex cover of a graph G using

pebbling moves, in [5] and [10] the authors seek to reach a dominating set of a

graph G using pebbling moves, and in [1] the authors seek to reach a dominating

set of a graph G using pebbling and rubbling moves.
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1.1. Terminology and Notation

Let G = (V,E) be a graph with vertex set V = V (G) and order n = |V |,
and let v be a vertex in V . A leaf of G is a vertex of degree 1, while a support

vertex of G is a vertex adjacent to a leaf. A strong support vertex is a support

vertex with at least two leaf-neighbors. A star is a tree with at most one vertex

that is not a leaf.

The distance between two vertices u and v in a connected graph G, denoted

by d(u, v), is the length of a shortest (u, v)-path in G. The maximum distance

among all pairs of vertices of G is the diameter of G, denoted by diam(G). If

d(u, v) = diam(G), then u and v are called peripheral vertices of G. A set S of

vertices in a graph G is a dominating set of G if every vertex in V \S is adjacent

to a vertex in S.

In addition to a pebble distribution, we will use a weight function w : V →
Z≥0. The purpose of this weight function is to serve as a target to be reached

by a pebble distribution. In particular, we say that w is reachable from f if

there is a sequence of pebbling and rubbling moves from f which results in a

pebble distribution f ′ satisfying that f ′(v) ≥ w(v) for every vertex v. We let

the w-cover rubbling number of G, denoted ρw(G), be the minimum number of

pebbles, such that w is reachable from any pebble configuration of size ρw(G).

If only pebbling moves are allowed, the w-cover pebbling number of G, denoted

πw(G), is defined analogously. We observe that ρw(G) ≤ πw(G).

A pebble distribution f is called a simple distribution if f is non-zero at

exactly one vertex. We set stw(v) (respectively, strw(v)) to be the minimum

size of a simple configuration which places pebbles on v and from which w is

reachable via pebbling (respectively, pebbling and rubbling moves). Finally, we

define the w-rubbling stacking number of G to be strw(G) = maxv∈V (strw(v)), and

we define the w-pebbling stacking number of G to be stw(G) = maxv∈V (stw(v)).

1.2. Main Results

The Cover Pebbling Theorem, proven in [9], shows that to determine the

w-cover pebbling number of a graph for w strictly positive on all of the vertices,

it is sufficient to consider only simple initial pebbling distributions.

Theorem 1. [9] If w is a strictly positive weight function on a connected graph

G, then πw(G) = stw(G).

Belford and Sieben [2] pose the question: is the cover rubbling number the

same as the cover pebbling number for any graph?

Our main aim in this paper is two-fold. We first answer the question of

Belford and Sieben in the affirmative by proving a rubbling analogue of the

Cover Pebbling Theorem. Second, we strengthen this result for trees.

In particular, we prove a lemma showing that strw(v) = stw(v), and use it to

obtain the following result. A proof of Theorem 2 is given in Section 2.
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Theorem 2. If w is a strictly positive weight function on a connected graph G,

then πw(G) = ρw(G).

Next we prove a rubbling result analogous to Theorem 1 for trees and with

weight functions which are not strictly positive on every vertex. Let S be a

dominating set of a tree T , f be a pebble distribution on T , and wS : V (T )→
Z≥0 be strictly positive on S. We show that it is sufficient to consider simple

distributions on peripheral leaves to determine the number of pebbles necessary

to reach a specified dominating set of a tree. Specifically, we prove the following

two theorems.

Theorem 3. Let T be a tree, S be a dominating set of T , and wS : V (T )→ Z≥0
be strictly positive on S. If f is a pebble distribution on T from which wS is

not reachable, then there is a simple distribution f ′ (which depends on S) with

|f ′| = |f |, and from which wS is not reachable.

Theorem 4. Let T be a non-trivial tree, S be a dominating set of T , and

wS : V (T )→ Z≥0 be strictly positive on S. Let f be a simple configuration with

maximum size such that wS is not reachable from f . If v is the vertex pebbled

by f , then v is a peripheral vertex of T .

Proofs of Theorems 3 and 4 are given in Section 3.

Before proceeding, we first explain a few implications of Theorem 3, as well

as the necessity of the dominating condition and the rubbling move.

Since the only requirement for S is that it be a dominating set, we note

that Theorems 3 and 4 hold for many variations of domination. For example,

the theorems remain true if the weight function is strictly positive on a total

dominating set, a paired dominating set, a connected dominating set, and even

in the case that the weight function is a Roman dominating function. For more

details concerning domination and its variants, the reader is referred to [6].

On the other hand, Theorem 3 does not hold if we relax the property that

S is a dominating set. To see this let T be the subdivided star formed by

subdividing each edge of a the star K1,3 exactly once, and let c be the center

vertex of T . Further, let w(c) = 1 and w(v) = 0 for all other vertices v of T .

Note, w is strictly positive on S = {c}, but strw(T ) = 4 and ρw(T ) = 6. To see

that ρw(T ) > 5, observe that the pebble distribution placing three pebbles on

a leaf of T along with one pebble on each of the other two leaves cannot reach

w. We note that while S is not a dominating set, it is a distance 2-dominating

set of T , that is, every vertex in T is within distance 2 from vertex in S.

We also mention that Theorem 3 does not hold if we do not allow the use of

the rubbling move. To see this, one can simply consider the star with n leaves,

denoted K1,n. In this case, we could define a weight function w which is equal

to 1 on the single nonleaf vertex and is equal to zero on all of the leaves. Note, w
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is strictly positive on a dominating set of K1,n. Moreover, one easily computes

that strw(G) = stw(G) = 2. However, if we place one pebble on each leaf, then

this is a pebble distribution of size n from which w is not reachable if we do not

allow the rubbling move.

Finally, the case that the graph is not a tree is addressed in Section 4.

2. Proof of Theorem 2

In this section, we prove Theorem 2. It should be noted that our method is

different than the method suggested in [2]. We first prove a preliminary lemma.

Lemma 5. Let w be a weight function on a graph G. If w is reachable from a

simple distribution on v using pebbling and rubbling moves, then w is reachable

from the same simple distribution on v using only pebbling moves. In other

words, strw(v) = stw(v).

Proof. Consider a simple distribution which initially places all pebbles on a

vertex v. We show that in order to reach another vertex u, we need to consume

at least 2d(v,u) pebbles from v. Clearly, if d(v, u) = 1, two pebbles are necessary

to reach u and the result holds. Let d(v, u) = k ≥ 2, and for 1 ≤ j < k, assume

that at least 2j pebbles are consumed to reach a vertex at distance j from v.

Let s be a sequence of moves that reach u from v. Now the final move of

s is either a pebbling move consuming two pebbles from a neighbor of u or a

rubbling move consuming one pebble each from two neighbors of u. Since the

distance from v to any neighbor of u is at least k − 1, our inductive hypothesis

implies that it necessary to consume 2 · 2k−1 = 2k pebbles to reach u. But this

number of pebbles on v is all we need to place a pebble on u even if rubbling

moves are not allowed.

The proof of Theorem 2 follows fairly easily from Lemma 5. We recall the

statement of Theorem 2.

Theorem 2. If w is a strictly positive weight function on a connected graph

G, then πw(G) = ρw(G).

Proof. Recall that ρw(G) ≤ πw(G). By Theorem 1, πw(G) = stw(G). Since

stw(G) = maxv∈V (stw(v)) and strw(G) = maxv∈V (strw(v)), Lemma 5 gives that

stw(G) = strw(G). As strw(G) ≤ ρw(G), we have that πw(G) = stw(G) =

strw(G) ≤ ρw(G). Hence, πw(G) = ρw(G). This completes the proof.

3. Proofs of Theorems 3 and 4

We note that our proof of Theorem 3 is a somewhat involved modification of

the argument used to prove Theorem 7 in [4]. Recall the statement of Theorem 3.
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Theorem 3. Let T be a tree, S be a dominating set of T , and wS : V (T )→ Z≥0
be strictly positive on S. If f is a pebble distribution on T from which wS is

not reachable, then there is a simple distribution f ′ (which depends on S) with

|f ′| = |f |, and from which wS is not reachable.

Proof. Let f be a pebble distribution on T from which wS is not reachable, and

let pf be the number of pebbled vertices under f . Further, among all initial

pebbling distributions of size |f | from which wS is not reachable, we choose f

so that pf is minimized. If pf = 1, then we are finished. Hence, we may assume

that pf ≥ 2. We proceed by induction on the order n of T . The base cases

can easily be verified for trees having order n ≤ 2. Hence, we may assume that

n ≥ 3.

For induction, assume that the result holds for all trees of order less than n.

Let T be a tree of order n and fix a dominating set S of T . We first prove three

claims.

Claim 1. If there is a leaf ` of T with f(`) = 0, then the result holds.

Proof. Assume that f(`) = 0 and let v be the neighbor of ` in T . We remove

` from T and denote the resulting tree T ′. Let f ′ be the restriction of f on

T ′. Then |f ′| = |f |. We define a new weight function w on V (T ′) by w(v) =

wS(v) + 2wS(`) and w(x) = wS(x) for all other x ∈ V (T ′). Note that at least

one of v and ` is in every dominating set of T , and so w(v) ≥ 1 and w is strictly

positive on a dominating set of T ′. Also, wS is reachable from f in T if and

only if wS′ is reachable from f ′ in T ′. Thus, wS′ is not reachable from f ′,

and by the induction hypothesis, there is a simple configuration f ′′ on T ′, with

|f ′′| = |f ′| = |f |, from which wS′ is not reachable in T ′, and hence from which

wS is not reachable in T , giving the result. (�)

Henceforth, by Claim 1, we may assume that every leaf of T is pebbled under

f .

Claim 2. If pf = 2, then the result holds.

Proof. Assume that pf = 2. By Claim 1, every leaf is pebbled, implying that

T is the path (v1, v2, . . . , vn) and the two pebbled vertices are v1 and vn. Since

wS cannot be reached from f , there is a vertex vk such that wS(vk) > f(vk)

and moving pebbles from v1 and vn results in at most wS(vk)−1 pebbles on vk.

Note that vk could be one of v1 and vn. Relabeling the path if necessary, we

may assume that k − 1 ≥ n − k. Then, for every j in the range k ≤ j ≤ n, we

have d(v1, vj) ≥ d(vj , vn). With this in mind, we define a simple configuration

f ′(v1) = f(v1) + f(vn) and f ′(vi) = 0 for 2 ≤ i ≤ n. Hence, f ′ is a simple

distribution on T such that wS is not reachable from f ′ and |f | = |f ′|, as

desired. (�)

6



Claim 3. If there is a leaf ` of T with 1 ≤ f(`) ≤ wS(`), then the result holds.

Proof. Assume that f(`) ≤ wS(`) and let v be the neighbor of ` in T . We

define a pebble configuration, f ′, on T by f ′(v) = f(v) + f(`), f ′(`) = 0, and

f ′(x) = f(x) for all other x. Note, |f ′| = |f |. Further, under f ′ at least

2wS(`) pebbles must be moved from v to cover ` with wS(`) pebbles. Since

f ′(v) = f(v) + f(`) ≤ f(v) + wS(`) and wS is not reachable from f , it follows

that wS is not reachable from f ′. Since f ′(`) = 0, we can apply Claim 1 to

obtain the result. (�)

We now return our attention to the proof of Theorem 3. By Claim 2, we

may assume that pf ≥ 3, for otherwise we are finished. By Claim 3, we may

assume that for every leaf u, f(u) > wS(u).

Let v1 be a leaf of T . If T is not a path, then let vm be the vertex of degree

at least 3 at the shortest distance from v1. If T is a path, then let vm be the

other leaf of T . We call vm the split vertex of v1. Further, let (v1, v2, . . . , vm)

denote the v1-vm-path in T . If there are vertices in {v2, . . . , vm} which receive

pebbles from f , then the one with the smallest subscript is called the nearest

pebbled vertex of v1. Since pf ≥ 3, if T is a path, at least one nonleaf vertex is

pebbled.

Note that we can remove f(v1) − wS(v1) pebbles from v1 and add s1 =⌊
f(v1)−wS(v1)

2

⌋
pebbles on v2 using pebbling moves. Moreover, if s1 + f(v2) >

wS(v2), then s2 =
⌊
s1+f(v2)−wS(v2)

2

⌋
pebbles can be moved to v3, and so on.

To aid in our discussion, we say that v1 supplies vr if f reaches vr using this

method, that is, if sr−1 ≥ 1.

Let vk be the vertex with the largest subscript among all vertices supplied

by v1 on (v1, v2, . . . , vm). Note that this implies that every vertex in S on

(v1, v2, . . . , vk) is supplied by v1.

Assume first that v1 supplies its nearest pebbled vertex, say vj . We define

a new configuration f ′ of pebbles as f ′(v1) = f(v1) + f(vj), f
′(vj) = 0, and

f ′(v) = f(v) for all other vertices v of T . Note, |f ′| = |f | and wS is not reachable

from f ′ if wS is not reachable from f . This contradicts the minimality of pf .

Thus, we may assume that v1 does not supply its nearest pebbled vertex for

otherwise, the result holds. In particular, f(vk) = 0. Similarly, if f(vk+1) ≥ 1,

that is, if vk+1 is a pebbled vertex, then we define a new configuration f ′ of

pebbles. Let f ′(v1) = f(v1) + f(vk+1), f ′(vk+1) = 0, and f ′(v) = f(v) for all

other vertices v of T . Note, |f ′| = |f | and wS is not reachable from f ′ if wS is

not reachable from f , contradicting that pf is minimum.

Henceforth, we may assume that f(vi) = 0 for 1 ≤ i ≤ k + 1. Since k is the

largest subscript of a vertex on the v1-vm-path that can be supplied by v1 and

f(vk) = 0, it follows that sk−1 − wS(vk) ≤ 1. We consider the possibilities in

two cases based on k.
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Case 1. k < m− 1.

Note that deg(vk+1) = 2. We consider two subcases.

Subcase A. sk−1 − wS(vk) = 0, 1.

First assume that wS(vk+1) = 0. We let T ′ be the tree formed by removing

the path (v1, v2, . . . , vk+1) from T . Note, wS restricted to T ′ is strictly positive

on a dominating set. As deg(vk+1) = 2, we have that wS restricted to T ′ is

not reachable from f restricted to T ′ if and only if wS is not reachable from

f . Hence, wS restricted to T ′ is not reachable from f restricted to T ′, and by

the induction hypothesis there is a single vertex x ∈ T ′ such that wS restricted

to T ′ is not reachable from the distribution f ′, defined by f ′(x) = |f | − f(v1),

and f ′(v) = 0 for all other vertices v of T ′. It follows that wS is not reachable

from the distribution f ′′, defined by f ′′(x) = |f | − f(v1), f ′′(v1) = f(v1), and

f ′′(v) = 0 for all other vertices v of T . Now |f ′′| = |f | and f ′′ has exactly two

pebbled vertices, contradicting that pf is minimum.

Next assume that wS(vk+1) ≥ 1.

If sk−1 − wS(vk) = 1, we let T ′ be the tree formed by removing the path

(v1, v2, . . . , vk+1) from T , and we define a weight function on T ′ by w(vk+2) =

wS(vk+2) + 1 and w(v) = wS(v) for all other v. Note, w is strictly positive on a

dominating set of T ′. Moreover, the only way to move the extra pebble off of vk
is via the rubbling move r(vk, vk+2 → vk+1). It follows that w is not reachable

from f restricted to T ′ if and only wS is not reachable on T from f . We obtain

the result just as above.

If sk−1 − wS(vk) = 0, we let T ′ be the tree formed by removing the path

(v1, v2, . . . , vk) from T . Note, wS is strictly positive on a dominating set of T ′

and wS restricted to T ′ is not reachable from f restricted to T ′ if and only wS

is not reachable on T from f . The result follows just as above.

Subcase B. sk−1 − wS(vk) < 0, that is, wS(vk)− sk−1 ≥ 1.

Let T ′ be the tree formed by removing the path (v1, v2, . . . , vk) from T . If

sk−2−wS(vk−1)− 2sk−1 = 1, then we define w(vk+1) = wS(vk+1) + 2(wS(vk)−
sk−1 − 1) + 1 and w(v) = wS(v) for all other vertices v in T ′. Otherwise, we

define w(vk+1) = wS(vk+1) + 2(wS(vk)− sk−1) and w(v) = wS(v) for all other

vertices v in T ′. Note, by construction, w is strictly positive on a dominating

set of T ′. Then, w is not reachable from f restricted to T ′ if and only if wS

is not reachable from f in T . Thus, w is not reachable from f restricted to

T ′. Applying our inductive hypothesis, there is a simple configuration on T ′

of size |f ′| = |f | − f(v1) from which w is not reachable. Hence, there is a

configuration of size |f | on T with two initially pebbled vertices from which wS

is not reachable, contradicting that pf ≥ 3.

Case 2. k ≥ m− 1.
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Since v1 is an arbitrary leaf and the result holds for Case 1, we may assume

that every leaf ` supplies its split vertex v or the neighbor of v on the `-v-path.

Further, since vm is not a pebbled vertex and all leaves are pebbled, it follows

that T is not a path.

We begin by rooting T at some leaf ` and let v be the vertex of degree at

least three of farthest distance from `. Now any two leaf descendants of v have

v as their nearest split vertex. Label two of the leaf descendants of v as x and

y, and let P be the unique x-y-path in T . Note that v is on P and that the only

pebbled vertices on P are x and y.

Let vx be the neighbor of v on the x-v-path, and let vy be the neighbor of

v on the v-y-path. By assumption we have that x supplies either v or vx, and

y supplies either v or vy. Note, after x supplies v or vx and y supplies v or vy,

it is possible that additional pebbles can be placed on v using a rubbling move

r(vx, vy → v). Let s be the total number of pebbles which can be moved to v

after possibly being supplied by x and y and after possibly using the previously

mentioned rubbling move. Note, s could be equal to zero.

Relabeling the vertices x and y on path P if necessary, we may assume that

it takes more pebbles to supply the x-v-path from x than to supply the y-v-path

from y. Hence, the configuration fP on P which places f(x) + f(y) pebbles on

x and 0 pebbles on y can, at best, reach wS restricted to P and place s pebbles

on v. If we extend this configuration to T , then if wS is not reachable from f

on T , we have that wS is not reachable from the new configuration on T . But

the new configuration has size |f | and contradicts the minimiality of pf .

This completes the proof of Theorem 3.

It follows from Theorem 3 that if wS is not reachable from a configuration

f , then we may assume that f is a simple configuration. Our next result shows

that the single vertex which receives a pebble from f can be chosen to be a

peripheral vertex of T . Recall the statement of Theorem 4.

Theorem 4. Let T be a non-trivial tree, S be a dominating set of T , and

wS : V (T )→ Z≥0 be strictly positive on S. Let f be a simple configuration with

maximum size such that wS is not reachable from f . If v is the vertex pebbled

by f , then v is a peripheral vertex of T .

Proof. Let f be a simple configuration with f(v) = strwS
(v) − 1. Note, by

definition, f places the maximum number of pebbles on v while still satisfying

that wS is not reachable from f . Assume for contradiction that v is not a

peripheral vertex of T . Recall that every peripheral vertex is a leaf of T . Define

sw(v) =
∑

u∈S wS(u) · 2d(u,v).
Suppose first that v is not a leaf of T . Root T at v and let {v1, v2, . . . , vk}

be the children of v. Since v is not a leaf, k ≥ 2. Let Ti be the subtree of T

obtained by removing the edge vvi, and let Ti be rooted at vi. Let Si be the
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subset of S restricted to Ti, and let swi
=

∑
u∈Si

wS(u) · 2d(u,v) for i ∈ [k].

Relabeling the vertices if necessary, we may assume that the sw1
≤ swj

for all

j ≥ 2. But then placing
sw1

2 + 2
∑k

j=2 swj pebbles on v1 gives a simple pebble

configuration that cannot reach S having more pebbles than f , contradicting

that f has maximal size.

Henceforth, we may assume that v is a leaf, for otherwise we are finished.

Thus, the result holds for trees such that every leaf is a peripheral vertex. In

particular, the result holds for paths giving us a base case. Assume that the

result holds for all trees having n′ < n vertices.

Hence, T has at least three leaf vertices. Let x and y be peripheral leaves

such that d(x, y) = diam(T ). Note that v 6∈ {x, y} since by assumption v is not

a peripheral vertex.

Consider the case where T has exactly three leaves, x, y, and v. Let m

be the unique degree 3 vertex of T . It follows that d(x,m) > d(v,m) and

d(y,m) > d(v,m), else d(x, v) or d(y, v) would be at least as large as the

diam(T ), contradicting that v is not a peripheral vertex. Let T1 be the x-m-

path, T2 denote the y-m-path, and T3 denote the v-m-path in T . Without loss of

generality, assume that d(x,m) ≤ d(y,m). Then d(v,m) < d(x,m) ≤ d(y,m).

From this it is easily seen that for every u ∈ S, at least one of d(x, u) and d(y, u)

is at least d(v, u)+1. Consequently, sw(x)+sw(y) > 2sw(v), contradicting that

sw(v) is largest.

Finally, assume that T has more than three leaves. Let v′ 6∈ {v, x, y} be a

leaf of T (v′ may or may not be a peripheral leaf). Consider T ′ = T −v′. Define

the weight function w′S on T ′ as follows: w′S(z) = wS(z) + 2wS(v′), where z is

the neighbor of v′ in T . Note w′S is reachable from f on T ′ if and only if wS

is reachable from f on T . Now T ′ has n − 1 vertices and v does not become a

peripheral vertex in T ′. By induction on n, the number of pebbles needed on

some peripheral vertex of T ′ is larger than sw(v). This completes the proof.

4. Open Problems

In this brief section we give some questions which follow naturally from the

results in this paper.

1. Are there necessary and sufficient conditions on the weight function so

that Theorem 2 holds?

2. Is it necessary that the graph in Theorem 3 be a tree? The authors

strongly suspect that the answer is no and that a similar result can be

proven for all connected graphs.

3. Can one formulate and prove a converse statement to Theorem 3? In

particular, it would be interesting to know the precise condition on S so

that Theorem 3 holds.
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