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Abstract

The well-known Eneström-Kakeya Theorem states that a polynomial with
real, nonnegative, monotone increasing coefficients has all its complex zeros
in the closed unit disk in the complex plane. In this paper, we extend this
result by showing that all quaternionic zeros of such a polynomial lie in
the unit sphere in the quaternions. We also extend related results from the
complex to quaternionic setting.
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1. Introduction

While studying the theory of pension funds in the 1890s, Gustav Eneström
was lead to explore the zeros of a polynomial with real, positive, monotone
coefficients. He proved the following [2].

Theorem 1. Eneström-Kakeya Theorem. If p(z) =
∑n

`=0 a`z
` is a poly-

nomial of degree n (where z is a complex variable) with real coefficients sat-
isfying 0 ≤ a0 ≤ a1 ≤ · · · ≤ an, then all the zeros of p lie in |z| ≤ 1.

Soichi Kakeya independently proved Theorem 1 and published his proof
in English in 1912 [10]. Eneström later published a French translation of
his earlier proof (which appeared in Swedish) in 1920 [3]. For these reasons,
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the result has become known as the “Eneström-Kakeya Theorem.” For a
detailed survey of the result and its generalizations, see [5].

An early generalization of Theorem 1 was due to Joyal, Labelle, and
Rahman in 1967. They modified the Eneström-Kakeya Theorem by dropping
the condition of nonnegative coefficients, as follows (see [9]).

Theorem 2. If p(z) =
∑n

`=0 a`z
` is a polynomial of degree n (where z is a

complex variable) with real coefficients satisfying a0 ≤ a1 ≤ · · · ≤ an, then
all the zeros of p lie in |z| ≤ (|a0| − a0 + an)/|an|.

Govil and Rahman presented a result applicable to polynomials with com-
plex coefficients, as follows (see [8]).

Theorem 3. If p(z) =
∑n

`=0 a`z
` is a polynomial of degree n with complex

coefficients satisfying | arg a` − β| ≤ θ ≤ π/2 for some β and θ and for
` = 0, 1, 2, . . . , n and |a0| ≤ |a1| ≤ · · · ≤ |an|, then all the zeros of p lie in
|z| ≤ cos θ + sin θ + 2 sin θ

|an|
∑n−1

`=0 |a`|.

In the same paper, Govil and Rahman gave a result for polynomials
with complex coefficients and imposed a non-negativity and monotonicity
condition on the coefficients, as follows (see [8]).

Theorem 4. If p(z) =
∑n

`=0 a`z
` is a polynomial of degree n with complex

coefficients where Re a` = α` and Im a` = β` for ` = 0, 1, 2, . . . , n, satisfying
0 ≤ α0 ≤ α1 ≤ . . . ≤ αn, αn 6= 0, then all the zeros of p lie in |z| ≤
1 + 2

αn

∑n
`=0 |β`|.

2. Background

With the interpretation of the complex numbers as a two-dimensional
“number system,” Sir Rowan William Hamilton spent years trying to find a
three-dimensional number system. He failed at this, but famously succeeded
in finding a four-dimensional number system on October 16, 1843. This
number system is the quaternions which we denote as H in honor of Hamilton.
We use the standard notation H = {α+ βi+ γj + δk | α, β, γ, δ ∈ R}, where
i, j, k satisfy i2 = j2 = k2 = ijk = −1. The quaternions are the standard
example of a noncommutative division ring.

For q = α + βi + γj + δk ∈ H, the real part of q is α and β, γ, δ are the
imaginary parts of q. The conjugate is q = α−βi− γj− δk and the modulus
is |q| =

√
qq =

√
α2 + β2 + γ2 + δ2. The modulus is then a norm on H. For
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r > 0, we define the ball B(0, r) = {q ∈ H | |q| < r}. We define the angle θ
between two quaternions q1 and q2 by treating them as if they were vectors
in R4. For q1 = α1 + β1i+ γ1j + δ1k and q2 = α2 + β2i+ γ2j + δ2k, the angle
between q1 and q2 is

](q1, q2) = cos−1
(
α1α2 + β1β2 + γ1γ2 + δ1δ2

|q1||q2|

)
.

We represent the indeterminate for a quaternionic polynomial as q. With-
out commutativity we are left with the polynomial aqn and the polynomial
a0qa1q · · · qan, where a = a0a1 · · · an, as different. To alleviate this problem,
we adopt the standard that polynomials have the indeterminate on the left
and the coefficients on the right, so that we have the quaternionic polynomial
p1(q) =

∑n
`=0 q

`an. For such a p1 and p2(q) =
∑m

`=0 q
`bn, the regular product

is (p1 ∗ p2)(q) =
∑

i=0,1,...,n;j=0,1,...,m q
i+jaibj.

The absence of commutativity leads to a behavior of polynomials rather
unlike their behavior in the real or complex settings. For example, a real or
complex polynomial of degree n can have at most n (real or complex) zeros.
In the quaternionic setting, the second degree polynomial q2+1 has an infinite
number of zeros; namely, any q = βi + γj + δk where β2 + γ2 + δ2 = 1. We
denote the set of all such quaternions q as S: S = {βi+γj+δk | β2+γ2+δ2 =
1}.

The following result concerning the roots of the regular product of two
polynomials is from [11].

Theorem 5. Let f and g be given quaternionic polynomials. Then (f ∗
g)(q0) = 0 if and only if f(q0) = 0 or f(q0) 6= 0 implies g(f(q0)

−1q0f(q0)) = 0.

An analytic theory of functions of a quaternionic variable has been de-
veloped recently. The next result illustrates the fundamental role played by
the 2-sphere S in the zeros of quaternionic series, as well as polynomials (see
[6]).

Theorem 6. Let
∑∞

`=0 q
`a` be a given quaternionic power series with radius

of convergence R. Suppose that there exists x0, y0 ∈ R and I, J ∈ S with
I 6= J such that

∑∞
`=0(x0 + y0I)`a` = 0 and

∑∞
`=0(x0 + y0J)`a` = 0. Then

for all L ∈ S we have
∑∞

`=0(x0 + y0L)`a` = 0.

With this in mind, we see that we cannot use the degree of a polynomial
as a bound on the number of zeros. However, Gentili and Struppa have given
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a definition for the multiplicity of the zeros of a polynomial such that the
zeros counted by their multiplicity equals the degree of the polynomial (see
[7]).

Gentili and Struppa also introduced a Maximum Modulus Theorem for
regular functions [6]. Note, their class of regular functions includes conver-
gent power series and polynomials.

Theorem 7. Maximimum Modulus Theorem. Let B = B(0, r) be a
ball in H with center 0 and radius r > 0, and let f : B → H be a regular
function. If |f | has a relative maximum at a point a ∈ B, then f is constant
on B.

A number of results concerning polynomials have been extended from
the complex setting to the quaternionic setting. In particular, Bernstein’s
inequality and some of its refinements have been extended; see Chapter 6 of
[4]. In this paper we extend the Eneström-Kakeya Theorem from complex
polynomials to quaternionic polynomials.

3. Statements of Results

The proof of the Eneström-Kakeya Theorem only requires the Triangle
Inequality for modulus and the Maximum Modulus Theorem. Since both
of these hold in the quaternions, then it is straightforward to extend the
Eneström-Kakeya Theorem to functions of a quaternionic variable, as follows.

Theorem 8. If p(q) =
∑n

`=0 q
`a` is a polynomial of degree n (where q is a

quaternionic variable) with real coefficients satisfying 0 ≤ a0 ≤ a1 ≤ · · · ≤
an, then all the zeros of p lie in |q| ≤ 1.

We now show Theorem 8 is sharp. Consider the polynomial p(q) = qn−1+
qn−2 + · · · + q + 1. By Theorem 5, p(q) ∗ (q − 1) = 0 if and only if either
(1) p(q) = 0, or (2) p(q) 6= 0 implies p(q)−1qp(q) − 1 = 0. Notice that
p(q)−1qp(q) − 1 = 0 is equivalent to p(q)−1qp(q) = 1 and, if p(q) 6= 0, this
implies that q = 1. So the only zeros of p(q) ∗ (1 − q) are q = 1 and the
zeros of p. But p(q) ∗ (q − 1) = qn − 1. Now we explore the roots of unity.
For any u ∈ S (so u2 = −1), we have (cos(2kπ/n) + u sin(2kπ/n))n = 1
where k ∈ {0, 1, . . . , n− 1} (this follows from De Moivre’s Theorem; see, for
example, [1]). Note, for k = 0 we get 1 as a root of unity. Moreover, if n is
even and k = n/2 we also get −1 as a root of unity.
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First, consider n odd. Then, we notice that cos((n− `)π/n) = cos(`π/n)
and sin((n−`)π/n) = − sin(`π/n), so the pair of roots for k = ` and k = n−`
where ` ∈ {1, 2, . . . , (n − 1)/2}) lie on the same sphere. The corresponding
(n− 1)/2 spheres are distinct since the real parts are distinct. By Theorem
6, all elements of these spheres are also roots of the polynomial. Therefore,
for n odd the set of roots of p(q)∗ (q−1) consists of 1 real root and (n−1)/2
isolated spheres, consistent with Gentili and Struppa’s multiplicity theorem
in [7].

Similarly, for n even the set of roots of p(q) ∗ (q − 1) consists of two real
roots (namely, 1 and −1) and (n − 2)/2 isolated spheres (corresponding to
k ∈ {1, 2, . . . , (n − 2)/2} in the formula above). By Gentili and Struppa’s
multiplicity theorem in [7], this is all the roots of p(q)∗(q−1). The polynomial
p(q) = qn−1 + qn−2 + · · · + q + 1 has all coefficients real and equal and so
it satisfies the hypotheses of the Eneström-Kakeya Theorem. So p has all
roots on |q| = 1. This example shows that the bound in Theorem 8 is best
possible.

The following is similar to Theorem 2 but instead of polynomials with
monotone increasing real coefficients, it considers quaternionic polynomials
with monotone increasing real parts and imaginary parts.

Theorem 9. If p(q) =
∑n

`=0 q
`a` is a polynomial of degree n with quater-

nionic coefficients and quaternionic variable, where a` = α` + β`i+ γ`j + δ`k
for ` = 0, 1, . . . , n, and satisfying α0 ≤ α1 ≤ · · · ≤ αn, β0 ≤ β1 ≤ · · · ≤
βn, γ0 ≤ γ1 ≤ · · · ≤ γn, δ0 ≤ δ1 ≤ · · · ≤ δn, then all the zeros of p lie in

|q| ≤ (|α0| − α0 + αn) + (|β0| − β0 + βn) + (|γ0| − γ0 + γn) + (|δ0| − δ0 + δn)

|an|
.

Notice that if we take β` = γ` = δ` = 0 for ` = 0, 1, . . . , n in Theorem 9
then we get Theorem 2 as a corollary.

We also extend Theorem 3 to quaternionic polynomials.

Theorem 10. Let p(z) =
∑n

`=0 q
`a` be a polynomial of degree n with quater-

nionic coefficients and quaternionic variable. Let b be a nonzero quater-
nion and suppose ](a`, b) ≤ θ ≤ π/2 for some θ and for ` = 0, 1, 2, . . . , n.
Assume |a0| ≤ |a1| ≤ · · · ≤ |an|. Then all the zeros of p lie in |q| ≤
cos θ + sin θ + 2 sin θ

|an|
∑n−1

`=0 |a`|.

In the terminology of vector spaces, the set {q ∈ H | ](q, b) = π/2} is the
“perp space” or “orthogonal complement” of the span of b (treating b as a

5



vector) and {q ∈ H | ](q, b) ≤ θ ≤ π/2} is a “convex cone.” If a` = α` + β`i,
where α`, β` ∈ R, for ` = 0, 1, 2, . . . , n, then Theorem 10 implies Theorem 3.

Finally, we will extend Theorem 4 to quaternionic polynomials.

Theorem 11. If p(z) =
∑n

`=0 q
`a` is a quaternionic polynomial of degree n

where a` = α` + β`i + γ`j + δ`k for ` = 0, 1, 2, . . . , n, satisfying 0 ≤ α0 ≤
α1 ≤ . . . ≤ αn, αn 6= 0, then all the zeros of p lie in |z| ≤ 1 + 2

αn

∑n
`=0(|β`|+

|γ`|+ |δ`|).

If we take γ` = δ` = 0 for ` = 0, 1, . . . , n in Theorem 11 then we get
Theorem 4 as a corollary.

4. Proofs of Results

We need the following for the proof of Theorem 10.

Lemma 12. Let q1, q2 ∈ H where q1 = α1 + β1i + γ1j + δ1k and q2 =
α2 + β2i+ γ2j + δ2k, ](q1, q1) = 2θ′ ≤ 2θ, and |q1| ≤ |q2|. Then

|q2 − q1| ≤ (|q2| − |q1|) cos θ + (|q2|+ |q1|) sin θ.

Proof. Define ~v1 = [α1, β1, δ1, γ1] and ~v2 = [α2, β2, δ2, γ2] in R4. Then
‖~v1‖ = |q1|, ‖~v2‖ = |q2|. Let 2θ′ be the angle between ~v1 and ~v2. So

‖~v2 − ~v1‖2 = ‖~v1‖2 + ‖~v2‖2 − 2‖~v1‖‖~v2‖ cos 2θ′ ≤ ‖~v1‖2 + ‖~v2‖2 − 2‖~v1‖‖~v2‖ cos 2θ

= (‖~v1‖ − ‖~v2‖)2 cos2 θ + (‖~v1‖+ ‖~v2‖)2 sin2 θ

≤ (‖~v1‖ − ‖~v2‖)2 cos2 θ + 2(‖~v1‖ − ‖~v2‖)2(‖~v1‖+ ‖~v2‖)2 cos2 θ sin2 θ

+ (‖~v1‖+ ‖~v2‖)2 sin2 θ

= ((‖~v1‖ − ‖~v2‖) cos θ + (‖~v1‖+ ‖~v2‖) sin θ)2

and so
‖~v2 − ~v1‖ ≤ (‖~v2‖ − ‖~v1‖) cos θ + (‖~v1‖+ ‖~v2‖) sin θ.

Since ‖~v2 − ~v1‖ = |q2 − q1|, the claim holds.

Proof of Theorem 8. Define f by the equation

p(q)∗(1−q) = a0+q(a1−a0)+q2(a2−a1)+· · ·+qn(an−an−1)−qn+1an = f(q)−qn+1an.

By Theorem 5, p(q) ∗ (1 − q) = 0 if and only if either p(q) = 0, or p(q) 6= 0
implies p(q)−1qp(q)− 1 = 0. Notice that p(q)−1qp(q)− 1 = 0 is equivalent to
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p(q)−1qp(q) = 1 and, if p(q) 6= 0, this implies that q = 1. So the only zeros
of p(q) ∗ (1− q) are q = 1 and the zeros of p.

For |q| = 1, we have

|f(q)| =

∣∣∣∣∣a0 +
n∑
`=1

qn(a` − a`−1)

∣∣∣∣∣
≤ |a0|+

n∑
`=1

|qn(a` − a`−1)|

= |a0|+
n∑
`=1

|a` − a`−1|

= a0 +
n∑
`=1

(a` − a`−1)

= an.

Consider the function qn ∗ f(1/q) = qn ∗
∑n

`=0 q
−`a` =

∑n
`=0 q

n−`a`. We
have

max
|q|=1
|qn ∗ f(1/q)| = max

|q|=1

∣∣∣∣∣qn
n∑
`=0

q−`a`

∣∣∣∣∣ = max
|q|=1
|f(1/q)| = max

|q|=1
|f(q)|.

So qn ∗ f(1/q) has the same bound on |q| = 1 as f , namely |qn ∗ f(1/q)| ≤ an
for |q| = 1. Since qn ∗ f(1/q) =

∑n
`=0 q

n−`a` =
∑n

`=0 q
nan−` is a polynomial

and so is regular in |q| ≤ 1, then |qn ∗ f(1/q)| = |qnf(1/q)| ≤ an for |q| ≤ 1
by the Maximum Modulus Theorem (Theorem 7). Hence, |f(1/q)| ≤ an/|q|n
for |q| ≤ 1. Replacing q with 1/q, we see that

|f(q)| ≤ an|q|n for |q| ≥ 1. (1)

Next, for |q| ≥ 1 we have

|p(q) ∗ (1− q)| = |f(q)− qn+1an|
≥ an|q|n+1 − |f(q)|
≥ an|q|n+1 − an|q|n by (1)

= an|q|n(|q| − 1).

So if |q| > 1 then |p(q) ∗ (1 − q)| > 0 and p(q) ∗ (1 − q) 6= 0. Since the only
zeros of p(q) ∗ (1− q) are q = 1 and the zeros of p, then for |q| > 1 we have
p(q) 6= 0. That is, all the zeros of p lie in |q| ≤ 1 as claimed.
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The proofs of the three remaining theorems follow similar to that of the
previous proof.

Proof of Theorem 9. Define f as in the proof of Theorem 8 as f(q) =
p(q) ∗ (1− q) + qn+1an. For |q| = 1, we have

|f(q)| =

∣∣∣∣∣a0 +
n∑
`=1

qn(a` − a`−1)

∣∣∣∣∣
≤ |a0|+

n∑
`=1

|a` − a`−1|

=
√
α2
0 + β2

0 + γ20 + δ20

+
n∑
`=1

√
(α` − α`−1)2 + (β` − β`−1)2 + (γ` − γ`−1)2 + (δ` − δ`−1)2

≤ |α0|+ |β0|+ |γ0|+ |δ0|

+
n∑
`=1

(|α` − α`−1|+ |β` − β`−1|+ |γ` − γ`−1|+ |δ` − δ`−1|)

= |α0|+ |β0|+ |γ0|+ |δ0| − α0 − β0 − γ0 − δ0 + αn + βn + γn + δn.

As in the proof of Theorem 8, for |q| ≥ 1

|f(q)| ≤ ((|α0| − α0 + αn) + (|β0| − β0 + βn) + (|γ0| − γ0 + γn) + (|δ0| − δ0 + δn)) |q|n.

Next,

|p(q) ∗ (1− q)| ≥ |an||q|n+1 − |f(q)|
≥ |an||q|n+1 − ((|α0| − α0 + αn) + (|β0| − β0 + βn)

+(|γ0| − γ0 + γn) + (|δ0| − δ0 + δn)) |q|n

= (|an||q| − (|α0| − α0 + αn) + (|β0| − β0 + βn)

+(|γ0| − γ0 + γn) + (|δ0| − δ0 + δn)) |q|n.

So if

|q| > (|α0| − α0 + αn) + (|β0| − β0 + βn) + (|γ0| − γ0 + γn) + (|δ0| − δ0 + δn)

|an|
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(in which case |q| ≥ 1) then |p(q) ∗ (1− q)| > 0 and p(q) ∗ (1− q) 6= 0. Since
the only zeros of p(q) ∗ (1− q) are q = 1 and the zeros of p, then for

|q| > (|α0| − α0 + αn) + (|β0| − β0 + βn) + (|γ0| − γ0 + γn) + (|δ0| − δ0 + δn)

|an|

we have p(q) 6= 0. That is, all the zeros of p lie in

|q| ≤ (|α0| − α0 + αn) + (|β0| − β0 + βn) + (|γ0| − γ0 + γn) + (|δ0| − δ0 + δn)

|an|
,

as claimed.

Proof of Theorem 10. Again let f(q) = p(q)∗(1−q)+qn+1an. For |q| = 1,
we have

|f(q)| =

∣∣∣∣∣a0 +
n∑
`=1

qn(a` − a`−1)

∣∣∣∣∣
≤ |a0|+

n∑
`=1

|a` − a`−1|

≤ |a0|+
n∑
`=1

((|a`| − |a`−1|) cos θ + (|a`|+ |a`−1|) sin θ) by Lemma 12

= |a0|(1− cos θ − sin θ) + |an|(cos θ + sin θ) + 2 sin θ
n−1∑
`=0

|a`|

≤ |an|(cos θ + sin θ) + 2 sin θ
n−1∑
`=0

|a`|.

As in the proof of Theorem 8,

|f(q)| ≤

(
|an|(cos θ + sin θ) + 2 sin θ

n−1∑
`=0

|a`|

)
|q|n for |q| ≥ 1.
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Next,

|p(q) ∗ (1− q)| ≥ |an||q|n+1 − |f(q)|

≥ |an||q|n+1 −

(
|an|(cos θ + sin θ) + 2 sin θ

n−1∑
`=0

|a`|

)
|q|n

=

{
|an||q| −

(
|an|(cos θ + sin θ) + 2 sin θ

n−1∑
`=0

|a`|

)}
|q|n.

So if |q| > cos θ + sin θ + 2
|an| sin θ

∑n−1
`=0 |a`| then |p(q) ∗ (1 − q)| > 0 and

p(q) ∗ (1− q) 6= 0. Notice that

cos θ + sin θ +
2

|an|
sin θ

n−1∑
`=0

|a`| ≥ cos θ + sin θ ≥ 1

since θ ∈ [0, π/2]. So |q| > cos θ+ sin θ+ 2
|an| sin θ

∑n−1
`=0 |a`| implies also that

|q| > 1. Since the only zeros of p(q) ∗ (1 − q) are q = 1 and the zeros of p,
then for |q| > cos θ+ sin θ+ 2

|an| sin θ
∑n−1

`=0 |a`| we have p(q) 6= 0. That is, all

the zeros of p lie in |q| ≤ cos θ + sin θ + 2
|an| sin θ

∑n−1
`=0 |a`|, as claimed.

Proof of Theorem 11. First, note that

|a` − a`−1| = |(α` + β`i+ γ`j + δ`k)− (α`−1 + β`−1i+ γ`−1j + δ`−1k)|
≤ (α` − α`−1) + |β`|+ |β`−1|+ |γ`|+ |γ`−1|+ |δ`|+ |δ`−1|.

Let

f(q) = p(q)∗ (1−q)−qn+1αn =
n∑
`=1

q`(a`−a`−1)+a0−qn+1(βni+γnj+δnk).
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For |q| = 1 we have

|f(q)| =

∣∣∣∣∣
n∑
`=1

q`(a` − a`−1) + a0 − qn+1(βni+ γnj + δnk)

∣∣∣∣∣
≤

n∑
`=1

(|a` − a`−1|) + |a0|+ |βn|+ |γn|+ |δn|

≤
n∑
`=1

(α` − α`−1 + |β`|+ |β`−1|+ |γ`|+ |γ`−1|+ |δ`|+ |δ`−1|)

+ α0 + |β0|+ |γ0|+ |δ0|+ |βn|+ |γn|+ |δn|

= αn + 2
n∑
`=0

(|β`|+ |γ`|+ |δ`|),

and so

|qn ∗ f(1/q)| = |qnf(1/q)| ≤ αn + 2
n∑
`=0

(|β`|+ |γ`|+ |δ`|) for |q| = 1.

Then by the Maximum Modulus Theorem (Theorem 7),

|qnf(1/q)| ≤ αn + 2
n∑
`=0

(|β`|+ |γ`|+ |δ`|) for |q| ≤ 1.

Replacing q with 1/q, we see that

|f(1/q)| ≤ |q|n
(
αn + 2

n∑
`=0

(|β`|+ |γ`|+ |δ`|)

)
for |q| ≥ 1.

Next, for |q| ≥ 1,

|p(q) ∗ (1− q)| = |f(q) + qn+1αn|
≥ |qn+1αn| − |f(q)|

≥ |q|n+1αn − |q|n
(
αn + 2

n∑
`=0

(|β`|+ |γ`|+ |δ`|)

)

=

{
|q|αn −

(
αn + 2

n∑
`=0

(|β`|+ |γ`|+ |δ`|)

)}
|q|n.
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So if |q| > 1 + 2
αn

∑n
`=0(|β`| + |γ`| + |δ`|) then |p(q) ∗ (1 − q)| > 0 and

p(q) ∗ (1 − q) 6= 0. Since the only zeros of p(q) ∗ (1 − q) are q = 1 and the
zeros of p, then for |q| > 1 + 2

αn

∑n
`=0(|β`| + |γ`| + |δ`|) we have p(q) 6= 0.

That is, all the zeros of p lie in

|q| ≤ 1 +
2

αn

n∑
`=0

(|β`|+ |γ`|+ |δ`|),

as claimed.
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