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Abstract

In this paper we compute explicit formulas for the Hecke eigenvalues
of Ikeda lifts. These formulas, though complicated, are obtained by purely
elementary techniques.

1 Introduction

It is well-known in the setting of elliptic newforms that the Hecke eigenvalues
encode important arithmetic information. For example, if we attach a Galois
representation to our newform (for a survey of this material see [5]), then the
Hecke eigenvalues at p determine the characteristic polynomial of the image of
the Frobenius element at p.

Similarly, by the work of Laumon in [4] and Weissauer in [9], we have Galois
representations attached to degree 2 Siegel eigenforms, and just as in the elliptic
setting, the Hecke eigenvalues at p determine the characteristic polynomial of
the image of the Frobenius element at p.

In the setting of higher genus Siegel eigenforms, it is reasonable to assume
that similar arithmetic information is contained in the Hecke eigenvalues. Note,
in this setting we are hindered by the lack of Galois representations attached to
higher genus Siegel eigenforms.

We will consider the Ikeda lift, i.e., a map which sends an elliptic eigenform
to an even degree Siegel eigenform. In this setting, we derive explicit formulas
for the Hecke eigenvalues at p of the lifted form in terms of the Hecke eigenvalues
at p of the original elliptic eigenform.

Our paper is organized as follows. In Section 2 we give the necessary back-
ground on Siegel modular forms. In Section 3 we present the properties of the
Satake parameters and Hecke operators which we will need. Section 4 gives a
brief introduction the Ikeda lift and some required results. Finally, in Section 5
we derive the following expressions for the Hecke eigenvalues of Ikeda lifts. The
expression for λ(p; In(f)) is
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and the expression for λr(p
2; In(f)) is
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where d = a2+5b2−n2+2(n−2k+1)(a−2r)
4 .

2 Siegel Modular Forms

Given a ring R we set Mn(R) to be the set of n by n matrices with entries in
R.

Define the degree n symplectic group to be

GSp2n := {g ∈ GL2n : tgJng = µn(g)Jm, µn(g) ∈ GL1},

where Jn =

(
0n −1n
1n 0n

)
. We define Sp2n to be the kernel of µn. Throughout

we will denote Sp2n(Z) by Γn.
The genus n Siegel upper half-plane is given by

hn = {Z ∈Mn(C : tZ = Z, Im(Z) > 0}.

We have an action of GSp+
2n(R) := {g ∈ GSp2 n(R) : µn(g) > 0} on hn given by

gZ = (aZ + b)(cZ + d)−1,

for g =

(
a b
c d

)
.

For g ∈ GSp+
2n(R) and Z ∈ hn, we set j(g, Z) = det(cZ + d). Let k be

a positive integer. For a function F : hn → C we define the weight k slash
operator on F by

(F |kg(Z)) = µn(g)
nk
2 j(g, Z)−kf(gZ).

We say that F is a genus n Siegel modular form of weight k if F is holomorphic
and (F |kγ)(Z) = F (Z) for all γ ∈ Γn. Note, if n = 1 then we must also
require F to be holomorphic at the cusps. Denote the space of all such forms
by Mk(Γn). It is a basic result from the theore of Siegel modular forms that
every F ∈Mk(Γn) has a Fourier expansion of the form

F (Z) =
∑
Λn

aF (T )e(Tr(TZ)),
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where Λn is the set of n by n half-integral positive semi-definite symmetric
matrices and e(W ) := e2πiW . If aF (T ) = 0 unless T is strictly positive definite
we say that F is a cusp form, and we denote the space of all such cusp forms
by Sk(Γn).

3 Hecke Operators and Satake Parameters

Let g ∈ GSp2n(Q), then we write T (g) to denote the double coset ΓngΓn. Then,
we call T (g) a Hecke operator and we have an action of T (g) on F ∈ Mk(Γn)
given by

T (g)F =
∑

F |kgi,

where we are summing over a set of coset representatives for Γn\ΓngΓn. Let p
be a prime and define

Tn(p) = T (diag(1n, p1n)),

and for i = 1, . . . , n define

Tni (p2) = T (diag(1n−i, p1i, p
21n−i, p1i)).

Note, we will drop the n from the superscript when the genus is clear from
context. It is well known that these operators generate the local Hecke algebra
at p. We call F ∈ Mk(Γn) an eigenform if F is a simultaneous eigenvector for
each of the Hecke operators.

Let F ∈ Sk(Γn) be an eigenform. Then, there is a set of complex numbers
αi(p;F ) for 0 ≤ i ≤ n, called the Satake p-parameters of F , which completely
determine the eigenvalues of F with respect to T (p) and Ti(p

2) for 1 ≤ i ≤ n,
which we denote by λ(p;F ) and λi(p

2;F ), respectively.
In fact, from [7], we have the following relationships between the eigenvalues

of F , and the Satake parameters of F ,

λ(p;F ) = α0(p;F )(1 + σ1 + · · ·+ σn), (3)

λr(p
2;F ) = α0(p;F )2

n∑
i−j≥r
i,j≥0

mi−j(r)p
(i−j+1

2 )σiσj , (4)

where mh(r) := #{M ∈ Mh(Fp) : tA = A, corank(A) = r}, σi is the degree i
elementary symmetric function in α1(p;F ), . . . , αn(p;F ), and 1 ≤ i ≤ n. Note,
we have normalized our Satake parameters to satisfy

α0(p;F )2α1(p;F ) . . . αn(p;F ) = pnk−
n(n+1)

2 .

Suppose f ∈ Sk(Γ1) is a normalized eigenform, i.e., af (1) = 1. Then we will
make use of the following relationship as well,

α(p; f) + α(p; f)−1 = p
1−k
2 λ(p; f), (5)

3



where we simply use α(p; f) to denote α0(p; f).
Using these Satake parameters we can associate two L-functions to an eigen-

form F ∈ Sk(Γn). First, in order to define the standard L-function of F we need
the following local L-factor

Lp(s, F ; st) = (1− p−s)
n∏
i=1

(1− αi(p;F )p−s)(1− αi(p;F )−1p−s).

Then, the standard L-function associated to F is given by the following Euler
product

L(s, F ; st) =
∏
p

Lp(s, F ; st)−1.

Second, in order to define the spinor L-function associated to F we need the
following local L-factor

Lp(s, F ; spin)=(1−α0(p;F )p−s)

n∏
i=1

∏
1≤i1≤···≤ij≤n

(1−α0(p;F )αi1(p;F ) . . . αij (p;F )p−s).

Then, the spinor L-function associated to F is given by

L(s, F ; spin) =
∏
p

Lp(s, F ; spin)−1.

Note, when F is of genus 1, this is simply the usual Dirichlet series associated
to F .

4 The Ikeda Lift

In this section we introduce the Ikeda lift as presented in [3].
Let T > 0 be in Λn. Set DT to be the determinant of 2T , ∆T to be the

absolute value of the discriminant of Q(
√
DT ), χT to be the primitive Dirichlet

character associated to Q(
√
DT )/Q, and fT to be the rational number satisfying

DT = ∆T f
2
T .

Let Sn(R) denote the set of symmetric n× n matrices over a ring R. For a
rational prime p, let ψp : Qp → Cx be the unique additive character given by

ψp(x) = exp(−{x}p),

where {x}p ∈ Z[ 1
p ] is the p-adic fractional part of x. The Siegel series for T is

defined to be

bp(T, s) :=
∑

S∈Sn(Qp)/Sn(Zp)

ψp(Tr(TS))|ν(S)|pp−s, for Re(s) >> 0,

where ν(S) := det(S1) · Zp, and S1 is from the factorization S = S−1
1 S2 for a

symmetric coprime pair of matrices S1, S2. We have a factorization of the Siegel
series given by

bp(T, s) = γp(T, p
−s)Fp(T, p

−s),
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where

γp(T,X) =
1−X

1− pn
2 χT (p)X

n/2∏
i=1

(1− p2iX2),

and Fp(T,X) ∈ Z[X] has constant term 1 and deg(Fp(T,X)) = 2 ordp(fT ).
Using this polynomial Fp(T,X) we define

F̃p(T,X) := X− ordp(fT )Fp(T, p
−n

2−
1
2X).

We will make use of this F̃p(T,X) later.
Let f(τ) ∈ S2k−n(Γ1)) be a normalized eigenform and let

h(τ) =
∑
m>0

(−1)km≡0,1(4)

c(N)qN ∈ S+
k−n

2 + 1
2

(Γ0(4))

be an eigenform corresponding to f via. the Shimura correspondence.
For each T > 0 in Λn, define

a(T ) = c(|∆T |)f
k−n+1

2

T

∏
p

F̃p(T, α(p; f)), (6)

and form the following series

In(f)(z) =
∑
T

a(T )e(Tr(Tz)).

We have the following theorem.

Theorem 1. ([3, Thm. 3.2, 3.3]) The series In(f)(Z), referred to as the Ikeda
lift of f , is an eigenform in Sk(Γn) whose standard L-function factors as

L(s, F ; st) = ζ(s− n)

n∏
i=1

L(s+ k − n− i, f).

Note, if n = 2 then this L-function factorization agrees with that of the
Saito-Kurokawa lift. From the factorization of the standard L-function given
in the previous theorem, we are able to obtain an expression for αi(p; In(f)) in
terms of α(p; f) for 1 ≤ i ≤ n. However, in order to determine the eigenvalue of
In(f) we must also have information about α0(p; In(f)). This can be achieved
by determining the factorization of the spinor L-function of In(f). This fac-
torization can be found in [6]. In summary, we obtain the following relations
between Satake parameters

α0(p; In(f)) = p
nk
2 −

n(n+1)
4 α(p; f)−

n
2 , (7)

αj(p; In(f)) = pj−
(n+1)

2 α(p; f), for j = 1, . . . , n. (8)

Note, we our Satake parameters are normalized differently than the Satake
parameters in [6].
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5 Eigenvalues of the Ikeda lift

In this section we will derive Equations 1 and 2.
We begin by determining a nice expression for the symmetric polynomials

in Equations 3 and 4. Using Equation 8 we obtain the following expression,

σj = p−
j(n+1)

2 α(p; f)j

n(n+1)
2∑
i=0

q≤n(i, j)pi, (9)

where we are using q≤n(i, j) to denote the number of partitions of i into j distinct
parts where each part is no greater than n and our symmetric polynomial is in
α1(p; In(f)), . . . , αn(p; In(f)).
Combining Equation (7.3) and Theorem 8 of [1] we have the following generating
series for this partition function
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where we need only take the summation to n(n+ 1)/2 since we have restricted
to j ≤ n. Matching coefficients we have
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The following lemma follows immediately from this equality.

Lemma 2. For any j ≤ n,
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In summary we have
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We are now prepared to compute λ(p; In(f)). Combining Equations 3, 9, and
10 and pairing our terms using Lemma 2 we obtain the following expression for
λ(p; In(f)),
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Applying a theorem of Waterson from [8] along with Equation 5 we have
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Inserting this into the previous equation and rearranging we obtain the following
expression for λIn(f)(p)
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In order to compute a similar formula for λr(p
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mh(r) =

p(
h
2)

h∏
(p)

bh2 c∏
`=0

(1− p1−2`)

h−r∏
(p)

r∏
(p)

.

Applying this formula along with similar techniques used above we have the
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By making the substitutions a = i+ j and b = i− j and simplifying we obtain
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Just as above, we can shift each summation, pair appropriately, and then apply
the theorem of Waterson to obtain our final expression for λr(p
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where d = a2+5b2−n2+2(n−2k+1)(a−2r)
4 .
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