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Abstract

Let f be a newform of level 1 and weight 2κ− n for κ and n positive
even integers. In this paper we study congruence primes for the Ikeda lift
of f . In particular, we consider a conjecture of Katsurada stating that
primes dividing certain L-values of f are congruence primes for the Ikeda
lift. Instead of focusing on a congruence to a single eigenform, we deduce
a lower bound on the number of all congruences between the Ikeda lift
and forms not lying in the space spanned by Ikeda lifts.

1 Introduction

Let κ be an integer and let χ be a Dirichlet character of conductor N satisfying
χ(−1) = (−1)κ. One has an associated Eisenstein series Eκ,χ. It is a well-known
fact that for a prime ` - N there exists a cuspidal eigenform f of level M with
N |M such that f ≡ Eκ,χ (mod λ) for λ a prime dividing ` in a suitably large
extension of Z. Such congruences between cusp forms and Eisenstein series have
been studied by many authors. For instance, one can use such congruences to
make deductions on the structure of the residual Galois representation of the
cusp form, which can then be used to study Selmer groups associated to the
cusp form. For instance, one can see [26, 35, 41] for some prominent examples
of this type of argument.

If we view the Eisenstein series above as a “lift” of the Dirichlet character χ
from GL(1) to GL(2), then we can fit the congruences mentioned above into a
more general framework. Namely, one can consider more general automorphic
forms and lifting them to automorphic forms on other algebraic groups. This
approach has also received considerable attention as this method can also be
used to study Selmer groups of higher degree Galois representations, see for
example [3, 22, 34] for specific examples and [25] for a survey of this method.
This makes classifying primes for which one will have a congruence between a
lifted form and a non-lifted form a natural question to study. In this paper we
investigate this problem for Ikeda lifts.

Let κ and n be positive even integers, f ∈ S2κ−n(SL2(Z)) be a newform, and
In(f) ∈ Sκ(Sp2n(Z)) the Ikeda lift of f . In [20] Katsurada states a conjecture
on when a prime λ will satisfy that there is an eigenform F ∈ Sκ(Sp2n(Z)) that
is not an Ikeda lift and is congruent to In(f) modulo λ. The conjecture is in
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terms of divisibilities of special values of L-functions of f by λ. One can see
Conjecture 9 for the precise statement. To provide evidence for his conjecture
he proves that if a prime divides the required L-values and does not divide other
L-values then one indeed does have such a congruence (see Theorem 10.) In
this paper we also consider Ikeda lifts, but instead of focusing on producing
one congruence we introduce the Ikeda ideal. This ideal is an analogue of the
Eisenstein ideal in the GL(2) case and measures congruences between In(f) and
all other eigenforms. We then show that under similar hypotheses as given in
[20], we can do better and bound from below the congruences between In(f)
and all other eigenforms that are not lifts. One can see Theorem 14 for the
precise result.

One thing to note here is that while the Saito-Kurokawa lift is useful for
studying the p-adic Bloch-Kato conjecture for the L-value Lalg(κ, f) due to
the fact that the value Lalg(κ, f) “controls” the congruence between the Saito-
Kurokawa lift and a non-lifted form (see [3, 9] for example), the L-values that

control the congruence for an Ikeda lift are given by Lalg(κ, f)
∏n/2−1
j=1 Lalg(2j+

1, ad0 f). This indicates that if one knew the existence of Galois representa-
tions for automorphic forms on GSp2n as well as expected properties of these
representations, one could use the congruence results produced in this paper to
study the p-adic Bloch-Kato conjecture not only for Lalg(κ, f), but also for the
values Lalg(2j + 1, ad0 f) for j = 1, . . . , n/2 − 1. This makes such congruences
particularly interesting.

The structure of the paper is as follows. Section 2 recalls the basic definitions
we will need throughout the paper. We recall the Ikeda lift and some necessary
properties in Section 3. In the following section we state Katsurada’s conjecture
and result, introduce the Ikeda ideal, and show how Katsurada’s congruence can
be recovered by studying the Ikeda ideal. We then state our main result and
discuss the major hypotheses in Section 5. Section 6 gives a somewhat detailed
description of an Eisenstein series originally introduced by Shimura as well as the
results we’ll need to prove the main theorem. Finally, we conclude by proving
the main theorem in Section 7.

2 Modular Forms

In this section we recall the basics on modular forms and Siegel modular forms
that will be needed throughout the rest of the paper.

2.1 Basic definitions

Given a ring R with identity, we write Matn(R) for the ring of n by n matrices
with entries in R.

Set Jn =

(
0n −1n
1n 0n

)
and recall the degree n symplectic group is defined by

Gn = GSp2n =
{
g ∈ GL2n : tgJng = µn(g)Jn, µn(g) ∈ GL1

}
.
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We set Sp2n = ker(µn). We denote Sp2n(Z) by Γn to ease notation.
The Siegel upper half-space is given by

hn = {z ∈ Matn(C) : tz = z, Im(z) > 0}.

We have an action of G+
n (R) = {g ∈ Gn(R) : µn(g) > 0} on hn given by

gz = (agz + bg)(cgz + dg)
−1

for g =

(
ag bg
cg dg

)
.

For g ∈ G+
n (R) and z ∈ hn, we set

j(g, z) = det(cgz + dg).

Let κ be a positive integer. Given f : hn → C, we define the slash operator on
f by

(f |κg)(z) = µn(g)nκ/2j(g, z)−κf(gz).

Let Γ ⊂ Γn be a congruence subgroup. We say such an f is a genus n Siegel
modular form of weight κ and level Γ if f is holomorphic and satisfies

(f |κγ)(z) = f(z)

for all γ ∈ Γ. If n = 1 we also require that f is holomorphic at the cusps so that
we recover the theory of elliptic modular forms. We denote the space of genus
n, level Γ, and weight κ modular forms by Mκ(Γ).

Given f ∈Mκ(Γ), f has a Fourier expansion of the form

f(z) =
∑
T∈Λn

af (T )e(Tr(Tz))

where Λn is defined to be the set of n by n half integral positive semi-definite
symmetric matrices and e(w) := e2πiw. If af (T ) = 0 unless T > 0 (i.e., T is
positive definite), we say f is a cusp form. We write Sκ(Γ) for the cusp forms
in Mκ(Γ). Given a ring R, we write Mκ(Γ;R) for those modular forms whose
Fourier coefficients all lie in R and likewise for the cuspforms.

Let f1, f2 ∈ Mκ(Γ) with at least one of them a cusp form. The Petersson
inner product of f1 and f2 is defined by

〈f1, f2〉Γ =

∫
Γ\hn

f1(z)f2(z)(det y)κdµz,

where z = x+ iy with x = (xα,β), y = (yα,β) ∈ Matn(R),

dµz = (det y)−(n+1)
∏
α≤β

dxα,β
∏
α≤β

dyα,β

with dxα,β and dyα,β the usual Lebesgue measure on R. We will use the following
scaled definition that is independent of the congruence subgroup considered

〈f1, f2〉 =
1

[Γn : Γ]
〈f1, f2〉Γ

where Γn = Γn/{±12n} and Γ is the image of Γ in Γn.
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2.2 Hecke algebras

Let Γ ⊂ Γn be a congruence subgroup. Given g ∈ G+
n (Q), we write T (g) to

denote the double coset
ΓgΓ.

We define the usual action of T (g) on Siegel modular forms by setting

T (g)f =
∑
i

f |κgi

where ΓgΓ =
∐
i Γgi and f ∈Mκ(Γ). Let p be prime and define

T (n)(p) = T (diag(1n, p1n))

and for i = 1, . . . , n set

T
(n)
i (p2) = T (diag(1n−i, p1i, p

21n−i, p1i)).

It is well known these generate the local Siegel Hecke algebra at p.

Let H(n)
Z denote the Z-subalgebra of EndC(Sκ(Γ)) generated by T (n)(p) and

T
(n)
i (p2) for i = 1, . . . , n. Given any Z-algebra A, we write H(n)

A for H(n)
Z ⊗Z A.

Let E be a finite extension of Q` and OE the ring of integers of E. Then we

have H(n)
OE is a semi-local complete finite OE-algebra. One has

H(n)
OE =

∏
m

H(n)
m

where the product runs over all maximal ideals of H(n)
OE and H(n)

m denotes the

localization of H(n)
OE at m.

2.3 Congruences

Let f, g ∈ Mκ(Γ). Let ` be an odd prime, and let K/Q` be a finite extension
containing all the Fourier coefficients of f and g. Let O be the ring of integers
of K and λ a uniformizer of O. We write

f ≡ g (mod λb)

to denote
valλ(af (T )− ag(T )) ≥ b

for all T ∈ Λn. We refer to this as a congruence of Fourier coefficients.
We will also use the notion of a congruence of eigenvalues. In this case

if f and g are eigenforms for all t ∈ H(n)
O with eigenvalues λf (t) and λg(t)

respectively, we write
f ≡ev g (mod λb)

to denote
valλ(λf (t)− λg(t)) ≥ b

for all t ∈ H(n)
O .
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2.4 L-functions

In this section we introduce the L-functions that will be needed in this paper.
In the case of the relevant L-functions attached to elliptic modular forms, we
also introduce the appropriate canonical periods.

Given a general L-function L(s) with an Euler product

L(s) =
∏
p

Lp(s)

and a finite set of primes Σ, we write

LΣ(s) =
∏
p/∈Σ

Lp(s)

and
LΣ(s) =

∏
p∈Σ

Lp(s).

We begin with the case of an elliptic modular form f ∈ Sκ(Γ1). We assume
f is a normalized eigenform with Fourier expansion

f(z) =
∑
n≥1

af (n)e(nz).

Let πf = ⊗pπf,p be the automorphic representation associated to f . For each
prime p there exists a character σp so that πf,p = π(σp, σ

−1
p ). The p-Satake

parameter of f is given by α0(p; f) = σp(p). We will drop the f from the
notation when it is clear from context. The L-function of f is given by

L(s, f) =
∏
p

(1− α0(p)p−s−(κ+1)/2)−1(1− α0(p)−1p−s−(κ+1)/2)−1

=
∏
p

(1− af (p)p−s + pκ−1−2s)−1

=
∑
n≥1

af (n)n−s.

Given a Dirichlet character χ, we will also make use of the twisted L-function

L(s, f, χ) =
∑
n≥1

χ(n)af (n)n−s.

Let ` ≥ κ be a prime and let K be a suitably large finite extension of Q`
with ring of integers O. Let f ∈ Sκ(Γ1;O) be a normalized eigenform. Let ρf,λ
be the λ-adic Galois representation associated to f and assume the residual
representation ρf,λ is irreducible. Then we have canonical complex periods Ω±f
(determined up to `-units) by work of Vatsal ([39]). Note, Vatsal shows that
such periods exist for level greater than 3, but using arguments in [15] we can
define Ω±f for arbitrary level. One can see [8] for more details. Using these
periods we have the following theorem.

5



Theorem 1. ([29, 39]) Let f ∈ Sκ(Γ1;O) be as in the above discussion. There
exists complex periods Ω±f such that for each integer m with 0 < m < κ and
every Dirichlet character χ one has,

L(m, f, χ)

τ(χ)(2π
√
−1)m

∈
{

Ω+
f Oχ if χ(−1) = (−1)m

Ω−f Oχ if χ(−1) = (−1)m−1,

where τ(χ) is the Gauss sum of χ and Oχ is the extension of O generated by
the values of χ.

With this theorem in mind we set the following notation for the algebraic
part of L(m, f, χ) with 0 < m < κ

Lalg(m, f, χ) :=
L(m, f, χ)

τ(χ)(2π
√
−1)mΩ±f

,

where the choice of period is from the theorem.
For Siegel modular forms of genus greater than 1 there are two relevant

L-functions: the standard and spinor L-functions. Let f ∈ Sκ(Γn) be an eigen-
form. Let α0(p; f), α1(p; f), . . . , αn(p; f) denote the p-Satake parameters of f
normalized so that

α0(p; f)2α1(p; f) · · ·αn(p; f) = 1.

One can see [4] for more information on the Satake parameters. We drop f
and/or p in the notation for the Satake parameters when they are clear from

context. Set α̃0 = p
2nκ−n(n+1)

4 α0 and

Lp(X, f ; spin) = (1− α̃0X)

n∏
j=1

∏
1≤i1≤···≤ij≤n

(1− α̃0αi1 · · ·αijX).

The spinor L-function associated to f is given by

L(s, f ; spin) =
∏
p

Lp(p
−s, f ; spin)−1.

One should note that in the case f is an elliptic modular form the spinor L-
function is exactly L(s, f) defined above.

Set

Lp(X, f ; st) = (1−X)

n∏
i=1

(1− αi(p)X)(1− αi(p)−1X).

Then, we define the standard L-function associated to f by

L(s, f ; st) =
∏
p

Lp(p
−s, f ; st)−1.

Given a Hecke character χ, the twisted standard L-function is given by

L(s, f, χ; st) =
∏
p

Lp(χ(p)p−s, f ; st)−1.
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In the case that f ∈ Sκ(Γ1;O) is an elliptic modular form the standard L-
function is usually denoted by L(s, ad0 f), i.e., it is the adjoint L-function. In
this case we have via [42] that

L(m, ad0 f)

π2m+κ−1Ω+
f Ω−f

∈ Q

for m = 1, 3, . . . , κ− 1 and

L(m, ad0 f)

πm+κ−1Ω+
f Ω−f

∈ Q

for m = 2−κ, 4−κ, . . . , 0. We will only be interested in the first case; we denote
this algebraic value by Lalg(m, ad0 f).

3 The Ikeda lift

In this section we will present an introduction to the Ikeda lift. For the details
the reader is referred to Kohnen’s paper [23] or Ikeda’s original paper [16]. The
Ikeda lifting can be viewed as a composition of the Shintani map from the space
of elliptic modular forms to the space of half-integral weight modular forms and
a map from the space of half-integral weight forms to the correct space of Siegel
modular forms.

Throughout we assume κ, n to be positive even integers. We note here
that we begin with weight 2κ − n instead of 2κ as is used in [16, 23]. This
normalization is more convenient for our purposes.

We begin by recalling the algebraic version of Shintani’s lift that we require.
One has the following result of Shintani ([33]).

Theorem 2. There is a linear function

θκ,n : S2κ−n(Γ1)→ S+
κ−n2 + 1

2

(Γ0(4))

that is Hecke equivariant, i.e., given any prime p one has θκ,n(f |T (p)) = θκ,n(f)|T (p2).

We have the following result of Stevens that will be pivotal for the algebraic
construction.

Proposition 3. ([36, Prop. 2.3.1]) Let f ∈ S2κ−n(Γ1;O) be a Hecke eigenform
where O is the ring of integers of a field that can be embedded in C. Then there
is a nonzero complex number Ω(f) ∈ C× so that

1

Ω(f)
θκ,n(f) ∈ S+

κ−n2 + 1
2

(Γ0(4);O).

Moreover, if O is a discrete valuation ring Ω(f) can be chosen so that at least
one of the Fourier coefficients of 1

Ω(f)θκ,n(f) is a unit in O.

7



From now on we write θalg
κ,n(f) for 1

Ω(f)θκ,n(f) and will always choose the

period so that θalg
κ,n(f) has a unit Fourier coefficient in the case O is a discrete

valuation ring. We write

θalg
κ,n(f)(z) =

∑
m>0

m≡0,1 (mod 4)

c(m)e(mz).

Let T > 0 be in Λn, i.e., T is an n×n half integral positive definite symmetric
matrix. Set DT to be the determinant of 2T , ∆T to be the absolute value of the
discriminant of Q(

√
DT ), χT to be the primitive Dirichlet character associated

to Q(
√
DT )/Q, and fT to be the rational number satisfying DT = ∆T f

2
T .

Let Sn(R) denote the set of symmetric n× n matrices over a ring R. For a
rational prime p, let ψp : Qp → Cx be the unique additive character given by

ψp(x) = exp(−{x}p),

where {x}p ∈ Z[ 1
p ] is the p-adic fractional part of x. The Siegel series for T is

defined to be

bp(T, s) :=
∑

S∈Sn(Qp)/Sn(Zp)

ψp(Tr(TS))|ν(S)|pp−s, for Re(s) >> 0,

where ν(S) := det(S1) · Zp, and S1 is from the factorization S = S−1
1 S2 for a

symmetric coprime pair of matrices S1, S2. We have a factorization of the Siegel
series given by

bp(T, s) = γp(T, p
−s)Fp(T, p

−s),

where

γp(T,X) =
1−X

1− pn2 χT (p)X

n/2∏
i=1

(1− p2iX2),

and Fp(T,X) ∈ Z[X] has constant term 1 and deg(Fp(T,X)) = 2 ordp(fT ).
Using this polynomial Fp(T,X) we define

F̃p(T,X) := X− ordp(fT )Fp(T, p
−n2−

1
2X).

For each T > 0 in Λn, define

a(T ) = c(|∆T |)f
κ−n+1

2

T

∏
p

F̃p(T, α0(p; f)), (1)

and form the following series

In(f)(z) =
∑
T

a(T )e(Tr(Tz))

where we recall α0(p; f) is the pth Satake parameter of f . We have the following
theorem.
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Theorem 4. ([16, Thm. 3.2, 3.3]) The series In(f)(z), referred to as the Ikeda
lift of f , is an eigenform in Sκ(Γn) whose standard L-function factors as

L(s, F ; st) = ζ(s)

n∏
i=1

L(s+ κ− i, f).

We will also need further information about the integrality of the Fourier
coefficients of In(f). In particular, the following result is essential to our appli-
cations.

Theorem 5. [23, Thm. 1] Let θalg
κ,n(f) be as above and let a(T ) be as in Equation

1. Then,

a(T ) =
∑
d|fT

dκ−1φ(d;T )c
(
|∆T |(fT /d)2

)
,

where φ(d;T ) is an integer valued function.

Note, as an immediate consequence of this theorem and Proposition 3 we
have the following corollary.

Corollary 6. Let f ∈ S2κ−n(Γ1;O) be a Hecke eigenform where O is the ring of
integers of a field that can be embedded in C. Then In(f) has Fourier coefficients
in O.

We will also make use of the following result of Katsurada.

Proposition 7. [20, Prop. 4.6] Let f ∈ S2κ−n(Γ1) be a normalized eigenform
with Ikeda lift In(f). Let O be the ring of integers of a field that can be embedded
in C and let λ be a prime in O. If there is a fundamental discriminant D so
that the Dth Fourier coefficient of θalg

κ,n(f) is not divisible by λ, then there is
a Fourier coefficient of In(f) that is not divisible by λ. In particular, if O is
the ring of integers of some K ⊂ Q` with prime λ, then In(f) has a Fourier
coefficient that is a unit modulo λ.

Proof. The only thing to prove is the last statement, but this follows immedi-
ately from our normalization of θalg

κ,n.

Let f1, . . . , fr be an orthogonal basis of S2κ−n(Γ1) consisting of normalized
eigenforms. We denote the span of In(f1), . . . , In(fr) in Sκ(Γn) by SIk

κ (Γn). We
denote the orthogonal complement of SIk

κ (Γn) in Sκ(Γn) with respect to the
Petersson product by SN-Ik

κ (Γn).

4 A conjecture on the Ikeda ideal

In this section we present a conjecture of Katsurada on the congruence primes
of Ikeda lifts. We then introduce the Ikeda ideal and show how one can use the
Ikeda ideal to study all the congruences between In(f) and forms in SN-Ik

κ (Γn)
at once. This allows us to prove a stronger congruence result under roughly the
same conditions as given in [20].
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4.1 A conjecture of Katsurada

Definition 8. Let F ∈ Sκ(Γn;O) be an eigenform. Let λ ⊂ O be a prime of
residue characteristic `. We say λ is a congruence prime of F with respect to
V ⊂ (CF )⊥ if there exists an eigenform G ∈ V such that F ≡ev G (mod λ).
(Note, in order for this congruence to make sense, we may need to extend O so
that G ∈ Sκ(Γn;O) as well.)

One should note the above definition can be extended to levels other than
Γn, but we will have no need of such a definition in this paper.

Let f ∈ S2κ−n(Γ1) be a normalized eigenform. Katsurada’s conjecture states
that all of the primes dividing certain special values of L-functions of f are
congruence primes for the Ikeda lift In(f) with respect to the space SIk

κ (Γn)⊥.

Conjecture 9. [20, Conj. A] Let κ > n be integers and f = f1, f2, . . . , fr ∈
S2κ−n(Γ1;O) be a basis of normalized eigenforms. Let λ ⊂ O be a prime not
dividing (2κ − 1)!. Then λ is a congruence prime of In(f) with respect to
SIk
κ (Γn)⊥ if

λ|Lalg(κ, f)

n
2−1∏
i=1

Lalg(2i+ 1, ad0 f).

As evidence for this conjecture, Katsurada proves the following theorem.

Theorem 10. [20, Thm. 4.7] Let O, f , and λ be as in the conjecture with
κ > 2n + 4. Then λ is a congruence prime for In(f) with respect to SIk

κ (Γn)⊥

if the following are satisfied

1.

λ|Lalg(κ, f)

n
2−1∏
i=1

Lalg(2i+ 1, ad0 f);

2. for some integer m satisfying n/2 < m < κ/2−n/2 and some fundamental
discriminant D satisfying (−1)

n
2D > 0,

λ - Dζalg(2m)Lalg(κ− n/2, χD)

n∏
i=1

Lalg(2m+ κ− i, f);

3. for a constant Cκ,n :=
∏
j≤ 2κ−n

12
(1 + j+ · · ·+ jn−1) if n > 2 and Cκ,2 = 1,

λ -
Cκ,n〈f, f〉

Ω+
f Ω−f

.

It is noted in [20] that the second condition allows freedom to choosem so it is
reasonable to expect in many cases one can find anm with λ - ζalg(2m)

∏n
i=1 Lalg(2m+

κ− i, f).
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4.2 The Ikeda ideal

The conjecture in the previous subsection gives conditions when one will have
a congruence between an Ikeda lift In(f) and a form in SN-Ik

κ (Γn). In this
section we will introduce the Ikeda ideal associated to In(f) that will capture
this information as well. In fact, the ideal actually captures more information
as it measures all congruences between In(f) and forms in SN-Ik

κ (Γn).
Let f be a normalized eigenform in S2κ−n(Γ1;O) and In(f) the Ikeda lift of

f for O the ring of integers in a suitably large finite extension of Q`. Recall the

Hecke algebra over O acting on Sκ(Γn) is denoted by H(n)
O .

Let X ⊂ SIk
κ (Γn) be a Hecke-stable subspace and let Y be the orthogonal

complement in Sκ(Γn) to X under the Petersson product. In particular, the
examples we will be interested in are when X = CIn(f) or X = SIk

κ (Γn). Let

H(n),Y
O denote the image of H(n)

O in EndC(Y ) and let φ : H(n)
O → H(n),Y

O denote
the natural surjection.

We let Ann(In(f)) denote the annihilator of In(f) in H(n)
O . The semisim-

plicity of H(n)
O gives that there is an isomorphism

H(n)
O /Ann(In(f)) ∼= O.

Using that φ is surjective we have that φ(Ann(In(f))) is an ideal in H(n),Y
O .

We refer to this ideal as the Ikeda ideal associated to In(f) with respect to Y
and denote it by IYn (f). We will be interested in the index of this ideal. In
particular, one has that there exists an integer m so that

H(n),Y
O /IYn (f) ∼= O/λmO.

We give here two elementary propositions to relate this index to Katsurada’s
conjecture.

Proposition 11. With the notation as above, if there exists G ∈ Y , not neces-
sarily an eigenform, so that

In(f) ≡ G (mod λb),

then m ≥ b.

Proof. Assume that b > m and consider the following diagram

Note that each map in the diagram is an O-algebra surjection. Let t ∈
φ−1(λm) ⊂ H(n)

O . Then by definition we have tG = λmG. Moreover, by the
commutativity of the diagram we see that t ∈ Ann(In(f)), so the assumed
congruence gives

λmG ≡ 0 (mod λb),

i.e.,
G ≡ 0 (mod λb−m).
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H(n)
O

φ //

��

H(n),Y
O

��
H(n)
O /Ann(In(f))

φ //

'
��

H(n),Y
O /IYn (f)

'
��

O // O/λmO.

However, since we are assuming b > m, this gives

In(f) ≡ G ≡ 0 (mod λ).

This contradicts Proposition 7 and so it must be that b ≤ m.

Proposition 12. With the notation as above, suppose m ≥ 1. Then there exists
an eigenform G ∈ Y so that

In(f) ≡ev G (mod λ).

Proof. Let O be a suitably large extension of Z` so that In(f) ∈ Sκ(Γn;O) and
we have an orthogonal basis F1, . . . , Fr of Y defined over O. Suppose there are
no eigenforms G ∈ Y eigenvalue congruent to In(f).

Let S denote the C-vector space spanned by In(f), F1, . . . , Fr. Let H(n),S
O

denote the image of the Hecke algebra H(n)
O in EndC(S). For each eigenform

F ∈ S defined over O we obtain a maximal ideal mF ofH(n),S
O given as the kernel

of the map H(n),S
O → O/λ : t 7→ λF (t) (mod λ). We have that eigenforms F

and G are eigenvalue congruent modulo λ if and only mF = mG.
We now use the fact that In(f) is not congruent to any of F1, . . . , Fr to

conclude that
H(n),S
O = H(n),S

mIn(f)
×
∏
m

H(n),S
m

where the product is over the maximal ideals corresponding to F1, . . . , Fr. How-

ever, this gives that IYn (f) =
∏

mH
(n),S
m , and this is exactly H(n),Y

O . This con-
tradicts the assumption that m ≥ 1. Thus, it must be that there is a congruence
as desired.

To match the previous results up with Katsurada’s results, simply take X =
SIk
κ (Γn) and Y = SN-Ik

κ (Γn). In fact, one has that the index of the Ikeda ideal
measures all congruences between forms in Y and In(f). This follows from the
following result, rephrased for our situation. One should note that we use the
fact that the space of Ikeda lifts satisfies multiplicity one ([18, Theorem 7.1]) in
order to apply this result.
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Proposition 13. [5, Prop. 4.3] Let X and Y be as above and let F1, . . . , Fr be
a basis of Y . For each 1 ≤ i ≤ r, let mi be the largest integer so that

In(f) ≡ev Fi (mod λmi).

Then one has
1

e

r∑
i=1

mi ≥ val`(#H(n),Y
O /IYn (f))

where e is the ramification index of O over Z`.

Thus, one can view results giving a lower bound on the Ikeda ideal as a
strengthening of the results of [20] where one is only concerned with a congruence
modulo λ to a single eigenform.

5 Main results

We now state the main result of this paper. The proof will be given in Section
7. After stating the theorem, we discuss the main hypotheses.

Theorem 14. Let κ and n be positive even integers with κ > n+ 1 and let ` be
a prime so that ` > 2κ− n. Assume ` -

∏
p≤(2κ−n)/12(1 + p + · · · + pn−1). Let

f ∈ S2κ−n(Γ1) be a newform and let O be a suitably large finite extension of Z`
that contains all the eigenvalues of f with λ a uniformizer of O. Furthermore,

assume that ρf,λ is irreducible and valλ

(
〈f,f〉

Ω+
f Ω−

f

)
= 0. We make the following

assumptions.

1. There exists an integer N > 1 prime to ` and a Dirichlet character χ of
conductor N with χ(−1) = (−1)κ so that

valλ

LN (n− κ+ 1, χ)

n∏
j=1

LNalg(n+ 1− j, f, χ)

 = 0.

2. There exists a fundamental discriminant D prime to ` so that (−1)n/2D >
0, χD(−1) = −1, and

valλ(Lalg(κ− n/2, f, χD)) = 0.

3. We have

valλ

Lalg(κ, f)

n/2−1∏
j=1

Lalg(2j + 1, ad0 f)

 = b > 0.
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If F1, . . . , Fr is a basis of eigenforms of SN-Ik
κ (Γn) defined over O and we let mi

be the largest integer so that

In(f) ≡ev Fi (mod λmi),

then we have
1

e

r∑
i=1

mi ≥ b

where e is the ramification index of O over Z`.

The first hypothesis to make mention of is the condition that valλ

(
〈f,f〉

Ω+
f Ω−

f

)
=

0. This condition is equivalent to assuming there are no other normalized eigen-
forms g ∈ S2κ−n(Γ1;O) that are eigenvalue equivalent to f modulo λ. One can
see [14, 27] for further discussion. For a particular f this condition can be easily
checked using [7] or [28].

The two hypotheses we focus on are the ones concerning the λ-indivisibility
of L-values. We begin with the assumption that valλ(Lalg(κ−n/2, f, χD)) = 0.
Note this is a central critical value since the weight of f is 2κ− n. There have
been several results on the λ-divisibility of this particular special value due to
its relation with the Fourier coefficients of the half-integral weight modular form
θalg
κ,n(f). For example, it is shown in [10, Corollary 3] that for non-exceptional

primes ` there is a period Ω of f with the property that for infinitely many
fundamental discriminants D prime to ` with (−1)n/2D > 0 one has

ordλ

(
Dκ−n/2−1/2Lalg(κ− n/2, f, χD)

Ω

)
= 0.

Since we assume ρf,λ is irreducible, ` is automatically a non-exceptional prime
for f (see [38, Corollary 2] for example.) However, we are unable to apply
this result in our situation as the period Ω used is not the canonical period
Ω+
f that we are using to normalize the L-value. We are unaware of any known

period relation between Ω and Ω+
f . However, this does reduce this consideration

to another period ratio, and since we have already assumed above λ does not
divide a period ratio, this assumption is a reasonable one as well.

We next consider L(n − κ + 1, χ). It is well known that L(n − κ + 1, χ) =

−Bκ−n,χκ−n , which means that the λ-adic valuation of L(n− κ+ 1, χ) is given by
the λ-adic valuation of Bκ−n,χ and so can be related to class numbers. For
instance, let p be a prime with p 6= `, m ≥ 1 and ϕ be a Dirichlet character.
In this setting Washington proves ([40]) that for all but finitely many Dirichlet
characters ψ of p-power conductor with ϕψ(−1) = (−1)m one has

ordλ(L(1−m,ϕψ)/2) = 0.

In our set-up we can take m = κ − n, χ = ϕψ, and observe that χ(−1) =
(−1)κ = (−1)κ−n to see there are infinitely many χ so that

ordλ(L(n− κ+ 1, χ)) = 0.
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If this were the only L-value controlled by χ we would be able to remove the hy-

pothesis regarding this L-value. However, we also require that valλ

(∏n
j=1 L

N
alg(n+ 1− j, f, χ)

)
=

0. This means we must choose a χ so that all of these L-values are simultane-
ously λ-adic units. This is a much more delicate issue. We note here that we
have a great deal of freedom in choosing χ, namely the only restrictions concern
the parity of χ and that its conductor be prime to `. Thus, we have infinitely
many characters to choose from so it is reasonable to expect that one can often
find such a χ. In the case n = 2, i.e., when one considers Saito-Kurokawa lifts,
one can find computational evidence supporting the existence of such a χ in
[2]. One can use the same methods outlined there to produce computational
evidence for n > 2 as well.

6 Siegel Eisenstein Series

In this section we recall the definition of a Siegel Eisenstein series associated to a
character. Following Shimura we then make a suitable choice of a section so that
the Fourier coefficients of the Eisenstein series can be computed. Finally, we
consider the pullback of our Siegel Eisenstein series and recall an inner product
formula of Shimura. Throughout this section we assume κ and n are even
integers with κ > n+ 1.

6.1 Siegel Eisenstein series - general set up

Let Pn be the Siegel parabolic subgroup of Gn given by Pn = {g ∈ Gn : cg = 0}.
We have that Pn factors as Pn = NPnMPn where NPn is the unipotent radical

NPn =

{
n(x) =

(
1n x
0n 1n

)
: tx = x, x ∈ Matn

}
and MPn is the Levi subgroup

MPn =

{(
A 0n
0n α(tA)−1

)
: A ∈ GLn, α ∈ GL1

}
.

Let A denote the rational adeles. Fix an idele class character χ and consider
the induced representation

I(χ) = Ind
Gn(A)
Pn(A) (χ) =

⊗
υ

Iυ(χυ)

consisting of smooth functions f on Gn(A) that satisfy

f(pg) = χ(det(Ap))f(g)

for p =

(
Ap Bp
0 Dp

)
∈ Pn(A) and g ∈ Gn(A). For s ∈ C and f ∈ I(χ) define

f(pg, s) = χ(det(Ap))|det(ApD
−1
p )|sf(g)
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For υ a place of Q we define Iυ(χυ) and fυ(pg, s) analogously. We associate to
such a section the Siegel Eisenstein series

EA(g, s; f) =
∑

γ∈Pn(Q)\Gn(Q)

f(γg, s).

Observe that EA(g, s; f) converges absolutely and uniformly for (g, s) on compact
subsets of Gn(A) × {s ∈ C : Re(s) > (n + 1)/2}. Moreover, it defines an auto-
morphic form on Gn(A) and a holomorphic function on {s ∈ C : Re(s) > 0} with
meromorphic continuation to C with at most finitely many poles. Furthermore,
[24] gives a functional equation for EA(g, s; f) relating the value at (n+ 1)/2− s
to the value at s.

6.2 A choice of section

For our applications we need to restrict the possible χ and pick a particular
section f. Let N > 1 be an integer.

Let χ = ⊗υχυ be an idele class character that satisfies

χ∞(x) =

(
x

|x|

)κ
χp(x) = 1 if p -∞, x ∈ Z×p , and x ≡ 1 (mod N).

For each finite prime p, we set

K
(n)
0,p (N) = {g ∈ Gn(Qp) : ag, bg, dg ∈ Matn(Zp), cg ∈ Matn(NZp)} .

From this definition it is immediate that if p - N we have

K
(n)
0,p (N) = Gn(Qp) ∩Mat2n(Zp).

At the infinite place we put

K(n)
∞ = {g ∈ Sp2n(R) : g(in) = in} .

Set
K

(n)
0 (N) =

∏
p

K
(n)
0,p (N).

We choose our section f = ⊗υfυ as follows:

1. We set f∞ to be the unique vector in I∞(χ∞, s) so that

f∞(k, κ) = j(k, i)−κ

for all k ∈ K(n)
∞ .

2. If p - N we set fp to be the unique K
(n)
0,p (N)-fixed vector so that

fp(1) = 1.
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3. If p | N we set fp to be the vector given by

fp(k) = χp(det(ak))

for all k ∈ K(n)
0,p (N) with k =

(
ak bk
ck dk

)
and

fp(g) = 0

for all g /∈ Pn(Qp)K(n)
0,p (N).

This Eisenstein series is the Eisenstein series studied by Shimura in [31] and
[32].

Define

ΛNn (s, χ) = LN (2s, χ)

[n/2]∏
i=1

LN (4s− 2i, χ2)

and normalize EA by setting

EA(g, s; f) = π−n(n+2)/4ΛNn (s, χ)EA(gJ−1
n , s; f).

Set

Gnκ(z; f) = EA

((
y1/2 xy−1/2

0 y−1/2

)
,
n+ 1

2
− κ

2
; f

)
(2)

We have Gnκ(z; f) is a Siegel modular form of weight κ and level Γ
(n)
0 (N) ([30])

where

Γ
(n)
0 (N) =

{(
A B
C D

)
∈ Γn : C ≡ 0 (mod N)

}
.

Write
Gnκ(z; f) =

∑
T∈Λn

a(T ; f)e(Tr(Tz)).

The Fourier coefficients a(T ; f) are well-known for this particular choice of sec-
tion and normalization ([32, Chapters 18-19]).

Theorem 15. Let ` ≥ n+ 1 be an odd prime with ` - N . Then

Gnκ(z; f) ∈Mκ(Γ
(n)
0 (N);Z`[χ, inκ]).

Proof. One can see [1] or [8] for this fact.

6.3 Pullbacks of Siegel Eisenstein series

Let N > 1 be an integer and ` > n+ 1 a prime with ` - N .
Consider the diagonal embedding of hn × hn to h2n via the map

hn × hn ↪→ h2n

(z, w) 7→ diag[z, w] =

(
z 0
0 w

)
.
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We also have an embedding of Γn × Γn into Γ2n given by

Γn × Γn ↪→ Γ2n((
A1 B1

C1 D1

)
,

(
A2 B2

C2 D2

))
7→


A1 0 B1 0
0 A2 0 B2

C1 0 D1 0
0 C2 0 D2

 .

This allows us to view the natural action of Γn ×Γn on hn × hn as a restriction
of the action of Γ2n on h2n.

We will be interested in the restriction of the Eisenstein series G2n
κ (Z; f) to

hn×hn. We refer to such a restriction as a pullback. These pullbacks have been
considered in [6, 12, 13, 31, 32]. In general, if F is a modular form of degree 2n,

level Γ
(2n)
0 (N), and weight κ, then the restriction of F to hn × hn is a modular

form of degree n, level Γ
(n)
0 (N), and weight κ when considered as a function of

z or w.
Shimura calculates the following set of representatives for P2n\G2n/(Gn ×

Gn).

Lemma 16. [31, Lemma 4.2] For 0 ≤ r ≤ n let τr denote the element of G2n

given by

τr =

(
12n 0
ρr 12n

)
, ρr =

(
0n er
ter 0n

)
, er =

(
1r 0
0 0

)
.

Then the τr form a complete set of representatives for P2n\G2n/(Gn ×Gn).

We will make use of τn. Let F ∈ Sκ(Γn) be an eigenform. We can specialize
[31, Eqn. 6.17] to obtain

〈(G2n
κ |τn)(diag[z, w]; f), F c(w)〉 = Aκ,n,Nπ−

n(n+1)
2 L(n+ 1−κ, F, χ; st)F (z) (3)

where we have used F |Jn = F since F has level Γn and

Aκ,n,N =
2n(2κ−3n+2)/2

[Γn : Γ
(n)
0 (N)]

n−1∏
j=0

Γ((n− j)/2)

Γ((2n+ 1− j)/2)
.

As it will be important in the next section, note that since G2n
κ (z; f) ∈

Mκ(Γ
(2n)
0 (N);Z`[χ]), we have (G2n

κ |τn)(z; f) ∈Mκ(τ−1
n Γ

(2n)
0 (N)τn;Z`[χ]) by the

q-expansion principle for Siegel modular forms ([11, Prop. 1.5]). The Fourier
expansion of (G2n

κ |τn)(diag[z, w]; f) can be written as

(G2n
κ |τn)(diag[z, w]; f) =

∑
T1,T2∈Λn

 ∑
T∈Λ2n(T1,T2)

a
(
T ;G2n

κ |τn
) e(Tr(T1z))e(Tr(T2w))

where a(T ;G2n
κ |τn) is the T th Fourier coefficient of G2n

κ |τn and for T1, T2 ∈ Λn
we define

Λ2n(T1, T2) =

{
T ∈ Λ2n : T =

(
T1 b
b T2

)}
.
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This immediately gives that the Fourier coefficients of (G2n
κ |τn)(diag[z, w]; f) lie

in Z`[χ] as well.

7 Constructing a congruence

In this section we prove Theorem 14. We work under the hypotheses listed in
the theorem.

Our first step in constructing the congruence is to replace the Eisenstein
series (G2n

κ |τn)(diag[z, w]; f) with a form of level Γn × Γn. To do this, we take
the trace:

G̃2n
κ (diag[z, w]; f) =

∑
γ1,γ2

(G2n
κ |τn)(diag[z, w]; f)|(γ1 × γ2)

where the sum is over (Γn × Γn)/(τ−1
n Γ

(n)
0 (N)τn × τ−1

n Γ
(n)
0 (N)τn). We note

again that this has Fourier coefficients in Z`[χ] by the q-expansion principle.

Moreover, we know that G̃2n
κ is a cusp form in each variable via Section 3.2 of

[9].
Let F0 = In(f), F1, . . . , Fr be an orthogonal basis of eigenforms for Sκ(Γn).

Note that F c0 , . . . , F
c
r is also an orthogonal basis of eigenforms for Sκ(Γn). Ap-

plying [31, Eqn. 7.7] we may write

G̃2n
κ (diag[z, w]; f) =

∑
0≤i≤r
0≤j≤r

ci,jFi(z)F
c
j (w)

for some ci,j ∈ C. Furthermore, from [9, Lem. 5.1] we have that we can rewrite
this as

G̃2n
κ (diag[z, w]; f) = c0In(f)(z)In(f)(w) +

∑
0<j≤r

cjFj(z)F
c
j (w) (4)

where we write cj = cj,j and we have used that since f c = f , Corollary 6 gives
In(f)c = In(f).

We now turn our attention to the constant c0. Our goal is to show that we
can write c0 as a product of an element of Ox and λ−m for some m > 0.

Consider the inner product 〈G̃2n
κ (diag[z, w]; f), In(f)(w)〉. Note,

〈G̃2n
κ (diag[z, w]; f), In(f)(w)〉 = 〈(G2n

κ |τn)(diag[z, w]; f), In(f)(w)〉,

where we view the forms on the left hand side as being level Γn and on the right

hand side as being level τ−1
n Γ

(n)
0 (N)τn. Taking the inner product of both sides

of Equation 4 with In(f)(w), applying Equation 3, and solving for c0 we obtain

c0 =
Ak,n,NLN (n− κ+ 1, In(f), χ; st)

π
n(n+1)

2 〈In(f), In(f)〉
.

In [17], Ikeda made a conjecture relating 〈In(f), In(f)〉 to 〈f, f〉. We have the
following theorem of Katsurada and Kawamura which proves Ikeda’s conjecture
assuming n is even. We rephrase their result to suit our purposes.
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Theorem 17. [21, Theorem 2.3] Let κ be a positive even integer and let ` >
n + 1 be a prime. Let f ∈ S2κ−n(Γ1;O) be a newform with O a suitably large

finite extension of Z`. Assume valλ

(
〈f,f〉

Ω+
f Ω−

f

)
= 0. Let D be a fundamental

discriminant such that (−1)
n
2D > 0, χD(−1) = −1 and assume ` - D. Then if

In(f) is the Ikeda lift of f as given above, we have

〈In(f), In(f)〉
〈f, f〉n2

= u1 ·
Γ(κ)

∏n
2−1
j=1 Γ(2j + 2κ− n)|c(|D|)|2

∏n/2
j=1 ζalg(2j)

Γ(κ− n
2 )

×
Lalg(κ, f)

∏n/2−1
j=1 Lalg(2j + 1, ad0 f)

Lalg(κ− n
2 , f, χD)

,

where valλ(u1) = 0, c(|D|) is the |D|th Fourier coefficient of θalg
κ,n(f) from above

and we have used the assumption on 〈f,f〉
Ω+
f Ω−

f

to normalize the adjoint L-function

to our conventions.

We now apply this result to remove the period 〈In(f), In(f)〉 in our expres-
sion for c0 to obtain

c0 =
Bκ,n
|c(|D|)|2

· LN (n− κ+ 1, In(f), χ; st)Lalg(κ− n/2, f, χD)

π
n(n+1)

2 〈f, f〉n2 ζalg(n)
∏n/2−1
i=1 ζalg(2i)Lalg(2i+ 1, ad0 f)Lalg(κ, f)

,

where

Bκ,n = u2 ·
Γ(κ− n/2)

∏n−1
j=1 Γ((n− j)/2)

[Γn : Γ
(n)
0 (N)]Γ(k)

∏n−1
j=1 Γ((2n+ 1− j)/2)

∏n/2−1
j=1 Γ(2i+ 2k − n)

where u2 satisfies valλ(u2) = 0.
The following factorization is a direct consequence of Theorem 4:

LN (n− k + 1, In(f), χ; st) = LN (n− k + 1, χ)

n∏
i=1

LN (n+ 1− i, f, χ). (5)

Applying the assumption that valλ

(
〈f,f〉

Ω+
f Ω−

f

)
= 0, we can replace 〈f, f〉n/2 by

u3(Ω+
f Ω−f )n/2 for u3 a λ-unit. Furthermore, note that if Ω+

f is the period asso-

ciated to L(n+ 1− i, f, χ) as in Theorem 1, then Ω−f is the period associated to
L(n+ 1− (i+ 1), f, χ), and vice versa. Using this we can rewrite our expression
for c0 as

c0 = u4 · Bκ,n · CD,n,χ · Lf,χ,D
where u4 is a λ-unit, Bκ,n is defined as above,

CD,n,χ =
1

|ch(|D|)|2
∏n/2
i=1 ζalg(2i)

,
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and

Lf,χ,χD =
LN (n− κ+ 1, χ)Lalg(κ− n

2 , f, χD)
∏n
j=1 L

N
alg(n+ 1− j, f, χ)

Lalg(κ, f)
∏n/2−1
j=1 Lalg(2j + 2, ad0 f)

.

Note, it was shown in Section 4.2 of [8] that LN (n − k + 1, χ) ∈ Z`[χ]. As
Bκ,n, CD,n,χ, and Lf,χ,D are algebraic, we may consider the λ divisibility of c0.
First, using that n is even and ` > n+ 1 we have valλ(Bk,n) ≤ 0.

Next we turn our attention to CD,n,χ. Our choice of θalg
κ,n(f) given in Section

3, gives that |c(|D|)| ∈ O, and so valλ(|c(|D|)|2) ≥ 0. Consider ζalg(2j) for some

1 ≤ j ≤ n/2. By a well-known identity we have ζalg(2j) = (−1)j+1B2j2
2j−1

(2j)! ,

where Bm is the mth Bernoulli number. Then, it is an immediate consequence of
the Von Staudt-Clausen Theorem, see for example [19, page 233], that ζalg(2j)
is λ-integral, and hence valλ(ζalg(2j)) ≥ 0. Thus, we have valλ(CD,n,χ) ≤ 0.

By assumption we have valλ(Lf,χ,χD ) < 0, so under our assumptions we
have valλ(c0) < 0. We now show how this gives the desired congruence. Write
c0 = αλ−b for some b > 0 and λ-unit α. Using this, we may rewrite Equation 4
as

G̃2n
κ (diag[z, w]; f) = αλ−bIn(f)(z)In(f)(w) +

∑
0<j≤r

cjFj(z)F
c
j (w). (6)

Note, by Proposition 7 there is a T0 so that valλ(aIn(f)(T0)) = 0. We expand

Equation 6 in terms of z and equate the T th
0 Fourier coefficients to obtain

∑
T2∈Λn

 ∑
T∈Λ2n(T0,T2)

a(T,G2n
κ |τn)

 e(Tr(T2w)) = αλ−baIn(f)(T0)In(f)(w)

+
∑

0<j≤r

cjaFj (T0)F cj (w).

We now multiply the equation through by λm and recall that a(T,G2n
κ |τn) ∈ O

for all T to observe that

In(f)(w) ≡ − λb

αaIn(f)(T0)

∑
0<j≤r

cjaFj (T0)F cj (w) (mod λb).

Note that since aIn(f)(T0) is a λ-unit, we obtain the form on the right hand

side of the congruence cannot be trivial modulo λb, i.e., we have constructed a
nontrivial congruence. Set

G(w) = − λb

αaIn(f)(T0)

∑
0<j≤r

cjaIn(f)(T0)Fj(w).

Our next claim is that In(f) cannot be eigenvalue congruent modulo λ to
In(g) for any g ∈ S2κ−n(Γ1;O). This is given in the proof of Theorem 4.7 in
[20], but we reproduce his proof here for the convenience of the reader. First
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note that for any prime p, Katsurada constructs a Hecke operator t(p) ∈ H(n)
O

so that

λIn(f)(t(p)) = p(n−1)κ−n(n+1)/2λf (p)

n∑
j=1

pj .

Assume that there is such a g so that In(f) ≡ev In(g) (mod λ). In particular,
using the Hecke operator t(p) for any prime p with ` - p we have

(1 + p+ · · ·+ pn−1)λf (p) ≡ (1 + p+ · · ·+ pn−1)λg(p) (mod λ).

By assumption we have ` - (1 + p + · · · + pn−1) for all p ≤ (2κ − n)/12, so for
such p we have

λf (p) ≡ λg(p) (mod λ).

However, we can now apply the results in [37] to conclude that λ is a congruence

prime of f . However, by our assumption that valλ

(
〈f,f〉

Ω+
f Ω−

f

)
= 0 this cannot

happen. Thus, we cannot have an eigenvalue congruence between In(f) and
another Ikeda lift.

We now return to the setting of Ikeda ideals. Let X = CIn(f) and Y =
(CIn(f))⊥ where the notation follows that given in Section 4.2. Let F0 =
In(f), F1, . . . , Fr1 be a basis of SIk

κ (Γn) and Fr1+1, · · · , Fr be a basis of SN-Ik
κ (Γn)

defined over O. We have constructed a congruence

In(f) ≡ G (mod λb)

for some b ≥ 1 and G ∈ Y . We now apply Proposition 13 to conclude

1

e

r∑
i=1

mi ≥ b.

However, we know that m1 = · · · = mr1 = 0, so in fact we obtain

1

e

r∑
i=r1+1

mi ≥ b.

In short, though we do not obtain a lower bound on the Ikeda ideal associated
to In(f) with respect to SN-Ik

κ (Γn), we can still recover the same lower bound
on the total number of congruences we desire, which concludes the proof of the
main theorem.
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représentations automorphes. J. Inst. Math. Jussieu, 5:629–698, 2006.

24



[35] C. Skinner and E. Urban. The Iwasawa main conjectures for GL2. Invent.
Math., 2013.

[36] G. Stevens. Λ-adic modular forms of half-integral weight and a Λ-adic
Shintani lifting. Contemp. Math., 174:129–151, 1994.

[37] Jacob Sturm. On the congruence of modular forms, volume 1240 of Lecture
Notes in Math. Springer, Berlin, 1987.

[38] H.P.F. Swinnerton-Dyer. On `-adic representations and congruences for
coefficients of modular forms, volume 350 of Lecture Notes in Mathematics.
Springer-Verlag, Berlin, 1973.

[39] V. Vatsal. Canonical periods and congruence formulae. Duke Math. J.,
98(2):397–419, 1999.

[40] L. Washington. The non-p-part of the class number in a cyclotomic Zp-
extension. Invent. Math., 49:87–97, 1978.

[41] A. Wiles. The Iwasawa conjecture for totally real fields. Ann. of Math.,
131(3):493–540, 1990.

[42] D. Zagier. Modular forms whose Fourier coefficients involve zeta-functions
of qua- dratic fields, volume 627 of Lect. Notes in Math. Springer, 1977.

25


