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Abstract

In this paper we consider level stripping for genus 2 cuspidal Siegel
eigenforms. In particular, we show that it is possible to strip primes
from the level of Saito-Kurokawa lifts that arise as theta lifts and weak
endoscopic lifts with a mild condition on the associated character. The
main ingredients into our results are a level stripping result for elliptic
modular forms and the explicit nature of the forms under consideration.

1 Introduction

We fix a prime ` ≥ 3 throughout the paper. Let υ be a place dividing ` in the
field of algebraic numbers in C and let F denote the residue field of υ. Note
that F is an algebraic closure of F`. Given a number field E ⊂ C, the place υ
induces a prime λ of E that divides ` along with a canonical inclusion Fλ ↪→ F.
Note that this allows us to consider our Galois representations defined over Fλ
as taking values in F.

Let ρ : Gal(Q/Q) → GL2(F) be an odd, continuous, irreducible Galois
representation. Serre’s conjecture, now a theorem of Khare-Wintenberger, gives
that ρ is the residual representation ρf,λ for some newform f ∈ Sk(ρ)(Γ1(N(ρ)))
where k(ρ) and N(ρ) are the so-called Serre weight and level. An important
early step in studying this conjecture was showing that given a ρ as above so that
ρ ' ρf,λ for some normalized eigenform f of level Γ1(N`α), then in fact ρ ' ρg,λ
for some normalized eigenform g of level Γ1(N). This result is given as Theorem
2.1 in [11], which was well known by the time of its publication, for instance see
[14]. It is natural to ask if there is an analogous Serre-type conjecture in the
case of odd, continuous, Galois representations ρ : Gal(Q/Q)→ GSp4(F) and to
what extent the results known for GL(2) can be carried over to GSp(4). One can
see [5] for a statement of a Serre-type conjecture in this context. Our interest
is in the special case that such a ρ is given as ρF,λ for some eigenform F ∈
Sk

(
Γ

(2)
0 (N`α), χ

)
. In this paper we consider the case where ρF,λ is reducible.

This happens precisely when F is a CAP form (cuspidal associated to parabolic)
or a weak endoscopic lift.

In this paper we work classically, so we frame the question in this context.
Let k ≥ 2 and M ≥ 1 be integers. Let χ be a primitive even Dirichlet character
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modulo M . Write M = N`α with α ∈ Z≥1 and ` - N . Let F ∈ Sk
(

Γ
(2)
0 (M), χ

)
be a Siegel eigenform with associated character χ. We note here that we will only
be interested in the eigenvalues of F away from N`. As such, the Hecke algebra
of interest to us is generated by TS(p) and TS(p2) for p - N` where one can see
[1] for a definition of TS(p) and TS(p2). In light of this, by “stripping primes
from the level of F” we mean finding an integer k′ and a Dirichlet character

ψ modulo N such that there exists a Siegel eigenform G ∈ Sk′
(

Γ
(2)
0 (N), ψ

)
satisfying

λF (p) ≡ λG(p) (mod υ)

λF (p2) ≡ λG(p2) (mod υ),

for primes p - N` with λF (p) and λF (p2) the eigenvalues of F with respect to
the Hecke operators TS(p) and TS(p2), respectively. The main results of this
paper are that with a mild restriction on χ one can strip primes from the level
in the case that F is a CAP form that arises as a theta lift or F is a weak
endoscopic lift. These results rely heavily on Ribet’s result mentioned above
(see Theorem 4 below) and a careful analysis of the proof of this result.

2 The Saito-Kurokawa lifting

In order to frame our result properly, we begin with the following well-known
result.

Theorem 1. ([19], Thm. I, [15], Thm. 3.1.3) Let Π be a unitary irreducible
cuspidal automorphic representation of GSp4(A) for which Π∞ belongs to the
discrete series of weight (k1, k2). Let S be the set of places of ramification of Π.
There exists a number field E so that for any prime number ` and any extension
λ of ` to E, there is a continuous semi-simple Galois representation

ρΠ,λ : Gal(Q/Q)→ GL4(Eλ)

that is unramified away from S` := S ∪ {`} and satisfies

Lp(X,Π, spin) = det(X14 − ρΠ,λ(Frobp))

for all p /∈ S` where Lp(s,Π, spin) denotes the p-th Euler factor of the spinor
L-function of Π.

While these Galois representations are not always irreducible when attached
to a cusp form as is in the GL(2)-case, one does have a characterization of
when they are reducible. We deal with the first case in this and the subsequent
section. Namely, one has the following theorem.

Theorem 2. ([19], Theorem II) The Galois representation ρΠ,λ has a one-
dimensional invariant subspace if and only if Π is a CAP representation of
Saito-Kurokawa type.
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For a detailed discussion of automorphic representations of “Saito-Kurokawa
type” one can see ([10], [12], [13]). One knows that if a holomorphic cuspidal
Siegel modular F arises as a CAP form, i.e., the automorphic form associated
to F generates a CAP automorphic representation, then it must be CAP with
respect to the Siegel parabolic subgroup of GSp(4). These CAP forms are char-
acterized by Piatetski-Shapiro in [10]. He shows that such representations arise
either as the representations generated by theta lifts from the metaplectic cover
S̃L2(A) of SL2(A) or as a twist of such a representation by a one-dimensional

representation of GSp4(A). Let F ∈ Sk
(

Γ
(2)
0 (M), χ

)
be a CAP form and sup-

pose that it arises as a theta lift. This case corresponds to the classical Saito-
Kurokawa lifting. As we will work classically, we now recall the Saito-Kurokawa
lifting in this setting in more detail. For the most part one can see ([8],[9]) for
these results, though we present a slightly more general result below to allow
for non-trivial characters.

We now fix k to be an even integer and χ an even character. Let Jcusp
k,1 (M,χ)

denote the space of Jacobi cusp forms of weight k, index 1, level M , and char-
acter χ. There is a linear Hecke-equivariant map from S2k−2(Γ0(M), χ2) into
Jcusp
k,1 (M,χ). The precise definition of this map will not be important for our

purposes, but one can consult ([8], § 3) for the details.
Let f1, . . . , fr be a basis of newforms of Snew

2k−2(Γ0(M), χ2). For each i, set

Jcusp,new
k,1 (M,χ; fi) = {φ ∈ Jcusp

k,1 (M,χ) : TJ(p)φ = λfi(p)φ, p -M}

where TJ(p) denotes the pth Hecke operator on the space of Jacobi forms. We
know that Jcusp,new

k,1 (M,χ; fi) has dimension at least one for each i, and in
general the dimension can be strictly greater than 1.

It remains to connect the Jacobi forms to Siegel modular forms. Let Vm
denote index raising operator

Vm : Jcusp
k,1 (M,χ)→ Jcusp

k,m (M,χ) .

One can see [4] for the precise definition as it will not be needed here. The

Maass spezialschar S∗k

(
Γ

(2)
0 (M), χ

)
is a subspace of Sk

(
Γ

(2)
0 (M), χ

)
consisting

of those F whose Fourier coefficients satisfy

A(n, t,m) =
∑

d| gcd(n,t,m)
gcd(d,M)=1

dk−1A

(
nm

d2
,
t

d
, 1

)
.

Given φ ∈ Jcusp
k,1 (M,χ), define

Fφ(τ, z, τ ′) =
∑
m≥0

Vmφ(τ, z)e(mτ ′).

It is known that Fφ ∈ S∗k
(

Γ
(2)
0 (M), χ

)
and that the map φ 7→ Fφ gives an

isomorphism between Jcusp
k,1 (M,χ) and S∗k

(
Γ

(2)
0 (M), χ

)
for nearly all cases; the

3



only unknown case is dealt with below. In particular, details of this isomorphism
for full level and trivial character is given in [4] and the more general case of

level Γ
(2)
0 (M) follows from exactly the same argument as given there and is

noted in [9]. However, the setting of non-trivial character and arbitrary level
is not dealt with in any reference we know of and so we give a short proof of
the result in this case. One should note the Saito-Kurokawa correspondence for
non-trivial character and square-free level is given in [7] using representation
theoretic arguments that do not directly translate to this setting.

Lemma 3. Let φ(τ, z) ∈ Jcusp
k,1 (M,χ). Then Fφ ∈ S∗k

(
Γ

(2)
0 (M), χ

)
.

Proof. First, we note that the generators of Γ
(2)
0 (M) are given by the following

matrices,

X :=


a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1

 , Y :=


1 0 0 µ
λ 1 µ 0
0 0 1 −λ
0 0 0 1

 , Z :=


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


where

(
a b
c d

)
∈ Γ0(M) and (λ, µ) ∈ Z2. We need only check that F transforms

appropriately with respect to these matrices to see the image is in S∗k

(
Γ

(2)
0 (M), χ

)
as the Maass relations follow exactly as in the case with no character.

The action of each matrix on (τ, z, τ ′) is given by:

X : (τ, z, τ ′) 7→
(
aτ + b

cτ + d
,

z2

cτ + d
, τ ′ − cz2

cτ + d

)
,

Y : (τ, z, τ ′) 7→ (τ, z + λτ + µ, τ ′ + 2λz + λ2τ),

Z : (τ, z, τ ′) 7→ (τ ′, z, τ).

Given the action of X and Y , checking the transformation property with re-
spect to these two matrices is a routine calculation. To see that F transforms
appropriately with respect to Z we first write the Fourier expansion of F as

F (τ, z, τ ′) =
∑

n,m,t∈Z
n,m,4nm−t2≥0

A(n, t,m)e(nτ)e(tz)e(mτ ′).

From ([4], Theorem 4.2) we have that each Fourier coefficient A(n, t,m) is sym-
metric in n and m. Hence,

F (τ ′, z, τ) =
∑

n,m,t∈Z
n,m,4nm−t2≥0

A(n, t,m)e(nτ)e(tz)e(mτ ′)

=
∑

n,m,t∈Z
n,m,4nm−t2≥0

A(m, t, n)e(mτ)e(tz)e(nτ ′)

= F (τ, z, τ ′).
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Since, k and χ are even we see that,

Z : F (τ, z, τ ′) 7−→ F (τ, z, τ ′) = χ(−1)F (τ, z, τ ′).

Therefore, F transforms appropriately with respect to X,Y, Z, which completes
the proof.

It now follows as in the known cases that the map φ 7→ Fφ gives an isomor-

phism between Jcusp
k,1 (M,χ) and S∗k

(
Γ

(2)
0 (M), χ

)
. In fact, the isomorphism is

Hecke-equivariant in that

λFφ(p) = λφ(p) + χ(p)pk−2(p+ 1),

λFφ(p2) = χ(p)2p2k−6(p2 − 1) + χ(p)λφ(p)pk−3(p+ 1)

for all p -M .
Recalling the basis of newforms f1, . . . , fr of Snew

2k−2(Γ0(M), χ2) given above,
we define

S∗,new
k

(
Γ

(2)
0 (M), χ; fi

)
=
{
Fφ : φ ∈ Jcusp,new

k,1 (M,χ; fi)
}

and

S∗,new
k

(
Γ

(2)
0 (M), χ

)
=

r⊕
i=1

S∗,new
k

(
Γ

(2)
0 (M), χ; fi

)
.

In summary, we have that if f ∈ S2k−2(Γ0(M), χ2) is a normalized eigenform,

then there exists (at least one) Ff ∈ S∗k
(

Γ
(2)
0 (M), χ

)
so that

λFf (p) = λf (p) + χ(p)pk−2(p+ 1),

λFf (p2) = χ(p)2p2k−6(p2 − 1) + χ(p)λf (p)pk−3(p+ 1)

for all p -M and if F ∈ S∗,new
k

(
Γ

(2)
0 (M), χ

)
is an eigenform, there is a newform

f ∈ Snew
2k−2(Γ0(M), χ2) so that

λF (p) = λf (p) + χ(p)pk−2(p+ 1),

λF (p2) = χ(p)2p2k−6(p2 − 1) + χ(p)λf (p)pk−3(p+ 1)

for all p -M .

3 Level Stripping for Saito-Kurokawa Forms

In this section we show that given a Saito-Kurokawa lift Ff ∈ S∗,new
k (Γ

(2)
0 (N`α), χ),

we can strip the prime ` from the level of Ff as long as χ satisfies a minor tech-
nical condition given below. In particular, the case that Ff has trivial character
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will be a special case of our result. In fact, we show that there is a k′, a Dirich-
let character ψ, and a normalized eigenform g ∈ S2k′−2(Γ0(N), ψ2) so that
λFf (p) ≡ λFg (p) (mod υ) and λFf (p2) ≡ λFg (p2) (mod υ) for all p -M .

Using that χ is a Dirichlet character modulo M and that (Z/MZ)
× ∼=

(Z/NZ)
× × (Z/`αZ)

×
, we see that we can decompose χ as ετ where ε has

conductor dividing N and τ has conductor dividing `α. We now use that the
order of (Z/`αZ)

×
is `α−1(` − 1) to decompose τ into ηωi where η has con-

ductor a power of ` and has order a power of `, ω is the Teichmüller character
of conductor ` and order ` − 1, and i is an integer modulo `. In light of this,
we see that if i = 0 then χ is trivial on the tame inertia at `. In this case we
say that χ has trivial tame ramification. We require that our χ have trivial
tame ramification for the level stripping result. We explain exactly where this
condition is needed below.

We now state the result that will form the basis of our proof.

Theorem 4. ([11], Theorem 2.1) Let M = `αN where ` - N . Let f ∈
Sk(Γ0(M), ϕ) be a normalized eigenform. Then there exists a normalized eigen-
form g ∈ Sk′(Γ0(N), ϕ′) for some integer k′ such that λf (p) ≡ λg(p) (mod υ)
for all p - N`.

Before we can apply this theorem in our setting, namely, for f ∈ S2k−2(Γ0(M), χ2),
we must verify that the weight k′ of g is even and that we can express the char-
acter ϕ′ as ψ2 for some Dirichlet character ψ modulo N .

The fact that ϕ′ can be expressed as ψ2 can be found in [3]. In fact, it is
shown there that ψ(p) ≡ χ(p) (mod υ) for all p - N`.

To see that the weight k′ is even we will need to make a minor restriction
which becomes clear after working through the proof of Theorem 4 and keeping
track of the weight at each step. We factor our character χ as above. Following
the proof of Theorem 4 we have the following expression for the weight of g:

k′ =

{
`j(`− 1) + `α(2k − 2 + `− 1 + i) if ` > 3
`j(`+ 1) + `α(2k − 1 + `+ 1 + i) if ` = 3

}
,

where j is a sufficiently large integer. One can see [6] for a detailed rewrite of the
proof of ([11], Theorem 2.1) keeping track of the weights. Note, in both cases we
have that k′ is even if i is even and so we can take the Saito-Kurokawa lift of g in

this situation. By doing so we obtain a Siegel eigenform Fg ∈ S∗m
(

Γ
(2)
0 (N), ψ

)
where,

m :=

{
`j( `−1

2 ) + `α(k − 1 + `−1+i
2 ) + 1 if ` > 3

`j( `+1
2 ) + `α(k − 1 + `+1+i

2 ) + 1 if ` = 3

}
.

As Fg is the Saito-Kurokawa lift of g we have the following relationships between
the eigenvalues of g and G,

λFg (p) = λg(p) + ψ(p)pm−2(p+ 1), (1)

λFg (p2) = ψ(p)2p2m−6(p2 − 1) + ψ(p)λg(p)p
m−3(p+ 1), (2)
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where p - N` is a prime. For what follows we will need to further restrict to the
case when i = 0, i.e., when χ has trivial tame ramification. Combining equation
(1), Theorem 4 and making heavy use of the fact that p` ≡ p (mod `) we have
the following for ` > 3 and primes p - N`:

λFg (p) = λg(p) + ψ(p)pm−2(p+ 1)

= λg(p) + ψ(p)p`
j( `−1

2 )+`α(k−1+ `−1
2 )−1(p+ 1)

≡ λg(p) + ψ(p)p
`−1
2 +k+ `−1

2 −2(p+ 1) (mod υ)

≡ λf (p) + χ(p)pk−2(p+ 1) (mod υ)

= λFf (p).

Note that we require that i = 0 in order to deduce the first congruence given.
From this and equation (2) we have,

λFg (p2) = ψ(p)2p2m−6(p2 − 1) + ψ(p)λg(p)p
m−3(p+ 1)

= ψ(p)2p2`j( `−1
2 )+2`α(k−1+ `−1

2 )−4(p2 − 1) + ψ(p)λg(p)p
`j( `−1

2 )+`α(k−1+ `−1
2 )−2(p+ 1)

≡ ψ(p)2p2(`−1)+2k−6(p2 − 1) + ψ(p)λg(p)p
`−1
2 +k−3+ `−1

2 (p+ 1) (mod υ)

≡ χ(p)2p2k−6(p2 − 1) + χ(p)λf (p)pk−3(p+ 1) (mod υ)

= λFf (p2).

Note, a similar argument works ` = 3. Thus, we have shown the following
theorem.

Theorem 5. Let F ∈ S∗,new
k

(
Γ

(2)
0 (N`α), χ

)
be a Siegel eigenform, with k even,

α a positive integer, ` - N an odd prime, and χ an even Dirichlet character
modulo N`α having trivial tamely ramified part. Then there exists a Siegel

eigenform G ∈ S∗k′
(

Γ
(2)
0 (N), ψ

)
, with k′ a positive even integer and ψ an even

Dirichlet character modulo N such that,

λF (p) ≡ λG(p) (mod υ),

λF (p2) ≡ λG(p2) (mod υ),

for every prime p - N`.

If we restrict to the case that F is a CAP form arising from a theta lift with
trivial central character, Theorem 5 gives a complete solution to the problem
of stripping odd primes from the level. In the case of F giving rise to a general
CAP form it remains to deal with the case that F is a CAP form arising from
the twist of a theta lift. Unfortunately, the situation in this case is not so clear.
Suppose that the automorphic form associated to F generates an automorphic
representation of the desired form, namely, ΠF is given by σ × π where π is a
theta lift. The obvious thing to try would be to strip the desired prime from the
level of the Saito-Kurokawa form generating π using Theorem 5. Let π′ denote
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the automorphic representation generated by the form we obtain upon applying
Theorem 5. One would then naturally consider σ×π′. However, it is not known
when such a representation gives rise to a holomorphic cuspidal Siegel modular

form of the desired level Γ
(2)
0 (N). For instance, in the case of level Sp4(Z) or

Γ
(2)
0 (M) with M square-free, it is known that there are no holomorphic cuspidal

Siegel eigenforms F generating a representation of the form σ × π. In the case
that M is not square-free, the representation theory necessary to determine
when such forms exist is not currently known. The situation of a non-trivial
character is also unknown. Thus, with the current state of knowledge we can
say that Theorem 5 completely solves the problem for general CAP forms only
in the case of trivial character and square-free level.

4 Level Stripping for Weak Endoscopic Lifts

The previous two sections dealt with the case that ρF,λ has a one dimensional
invariant subspace. If ρF,λ is reducible the only other possibility is that ρF,λ
has no one dimensional invariant subspace, but has a two dimensional invariant
subspace. In this case ΠF is a weak endoscopic lift (see below for a definition).
One can see ([15], Theoreme 3.2.1) for a proof of the facts about the reducibility
of ρF,λ.

To this point we have restricted ourselves to scalar-valued Siegel modular
forms. However, to deal with endoscopic lifts we require vector-valued Siegel
modular forms. For a more thorough introduction to vector-valued Siegel mod-
ular forms one can consult [2] or [16]. Let ρ be a finite dimensional repre-
sentation of GL2(C) with representation space Vρ. A holomorphic function
F : h2 → Vρ is called a Vρ-valued Siegel modular form of weight ρ and level

Γ
(2)
0 (M) if F (γZ) = ρ(CZ + D)F (Z) for all γ =

(
A B
C D

)
∈ Γ

(2)
0 (M). We

denote the space of such forms by Mρ(Γ
(2)
0 (M), Vρ). As in the scalar-valued

case, there is a Siegel operator that one can use to define the subspace of cusp

forms, denoted Sρ(Γ
(2)
0 (M), Vρ). We now give the ρ that are of interest to us.

Let x, y be indeterminates, j ∈ Z with j ≥ 0, and set V = Cx ⊕ Cy. We
can identify Symj(V ), the j-th symmetric tensor product, with the space of
homogeneous polynomials of degree j in C[x, y]. Let k1, k2 ∈ Z with k1 ≥
k2 ≥ 3. We define a representation ρk1,k2 = Symk1−k2 ⊗detk2 of GL2(C) on

Symk1−k2(V ) by setting

ρk1,k2(g)(v(x, y)) =
(
det(g)k2

)
v((x, y)g)

for g ∈ GL2(C) and v(x, y) ∈ Symk1−k2(V ). Note here we have Vρk1,k2 =

Symk1−k2(V ) where V = Cx ⊕ Cy. One knows that an irreducible cuspidal
automorphic representation Π of GSp4(A) whose archimedean component is
holomorphic of weight (k1, k2) corresponds to a vector-valued Siegel modular
form F of weight ρk1,k2 and level a congruence subgroup of Sp4(Z) determined
by the non-archimedean components of Π. We generally write F has weight
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(k1, k2) to shorten the notation. Note that if k = k1 = k2, then ρk,k = detk,
Vρk,k = C and we recover the classical scalar-valued Siegel modular forms.

We say a unitary cuspidal automorphic representation Π of GSp4(A) is a
weak endoscopic lift if there are unitary irreducible cuspidal automorphic rep-
resentations π1 and π2 of GL2(A) with central characters ωπ1

= ωπ2
so that

Lp(s,Π, spin) = Lp(s, π1)Lp(s, π2) (3)

for almost all places p. We will call a Siegel modular form F a weak endoscopic
lift if ΠF is a weak endoscopic lift.

Let Π be a weak endoscopic lift so that Π∞ belongs to the discrete series of
weight (k1, k2). Let π1 and π2 be the unitary irreducible cuspidal automorphic
representations giving rise to Π. Then πi,∞ belongs to the discrete series of
weight ri where after a suitable ordering we have r1 = k1 + k2 − 2 and r2 =
k1− k2 + 2. One also has the converse statement if one begins with two unitary
irreducible cuspidal automorphic representations of GL2(A), namely, one can
associate a weak endoscopic lift to π1 and π2 with the weights given as above.
One can see [19] for a statement of these facts and ([17], [18]) for proofs. One
should note here that if F is a weak endoscopic lift and F is a scalar-valued
Siegel modular form, then F must have weight (k, k) and so the eigenforms f1,
f2 associated to π1, π2 must have weights given by r1 = 2k − 2 and r2 = 2.

As we again want to work classically for our level stripping, we begin by
translating equation (3) into a statement about the L-functions associated to
the elliptic modular forms f1 and f2 along with the spinor L-function associated
to the vector-valued Siegel modular form. Let fi ∈ Sri(Γ0(M), τ) and πfi the
associated automorphic representations. It is well known that the L-functions
of fi and πfi are related by

Lp(s, πfi) = Lp(s+ (ri − 1)/2, fi)

for all p - M . Let F be a vector-valued Siegel modular form of weight (k1, k2),

level Γ
(2)
0 (M), and character χ with associated automorphic representation ΠF .

The relation between the spinor L-functions of F and ΠF is given by

Lp(s,ΠF , spin) = Lp(s+ (k1 + k2 − 3)/2, F, spin)

for all p - M where the p-th Euler factor of the spinor L-function of a vector-
valued Siegel modular form is given by

Lp(s, F, spin) = (1−λF (p)p−s+(λF (p)2−λF (p2)−χ(p2)pµ−1)p−2s−χ(p2)λF (p)pµ−3s+χ(p4)p2µ−4s)

where µ = k1 + k2 − 3. One can immediately check this Euler factor reduces to
the familiar one in the case that k1 = k2 = k. Combining all of this, if F is a

weak endoscopic lift of weight (k1, k2), level Γ
(2)
0 (M), and character χ associated

to f1 ∈ Sr1(Γ0(M), τ) and f2 ∈ Sr2(Γ0(M), τ) for r1 > r2, then the L-functions
are related by

Lp(s, F, spin) = Lp(s, f1)Lp(s+ (r2 − r1)/2, f2),
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for all p - N` and we must have τ = χ2. Using this factorization of the L-
function for F we obtain the following relationships between the eigenvalues,

λF (p) = λf1(p) + p
r1−r2

2 λf2(p),

λF (p2) = λf1(p)2 + pr1−r2λf2(p)2 + p
r1−r2

2 λf1(p)λf2(p)− χ(p2)pr1−2(2p+ 1),

for every prime p - N`.
We now return to the case of interest to us, namely, we assume M = N`α

with α ≥ 0 and ` - N . We apply Theorem 4 to f1 and f2 and obtain two eigen-
forms g1 ∈ Sm1(Γ0(N), ψ2) and g2 ∈ Sm2(Γ0(N), ψ2) such that the following
congruences are satisfied for all primes p - N`:

λf1(p) ≡ λg1(p) (mod υ),

λf2(p) ≡ λg2(p) (mod υ).

Further, we have the following expressions for the weights m1 and m2,

m1 :=

{
`j1(`− 1) + `α(r1 + `− 1 + i) if ` > 3
`j1(`+ 1) + `α(r1 + `+ 1 + i) if ` = 3

}
,

m2 :=

{
`j2(`− 1) + `α(r2 + `− 1 + i) if ` > 3
`j2(`+ 1) + `α(r2 + `+ 1 + i) if ` = 3

}
.

Note, it is again necessary to restrict to the case when i = 0. As j1 and j2 are
both arbitrarily large, we are free to choose j1 such that m1 ≥ m2. Taking the
endoscopic lift of g1 and g2, we obtain a Siegel eigenform G of weight (k′1, k

′
2),

level Γ
(2)
0 (N), and character ψ where k′1 := m1+m2

2 and k′2 := m1−m2

2 + 2.
It only remains to show the eigenvalues of F are congruent to the eigenvalues

of G for all p - N`:

λG(p) = λg1(p) + p
m1−m2

2 λg2(p)

≡ λf1(p) + p
r1−r2

2 λf2(p) (mod υ)

= λF (p),

λG(p2) = λg1(p)2 + pm1−m2λg2(p)2 + p
m1−m2

2 λg1(p)λg2(p)− ψ(p2)pm1−2(2p+ 1)

≡ λf1(p)2 + pr1−r2λf2(p)2 + p
r1−r2

2 λf1(p)λf2(p)− χ(p2)pr1−2(2p+ 1) (mod υ)

= λF (p2).

Note, a similar argument works for ` = 3. Thus, we have shown the following
theorem.

Theorem 6. Let ` be an odd prime, and let N,α be positive integers such

that ` - N . Let F be a weak endoscopic lift of weight (k1, k2), level Γ
(2)
0 (N`α),

and character χ having trivial tame ramification. Then, there exists a weak
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endoscopic lift G of weight (k′1, k
′
2), level Γ

(2)
0 (N), and character ψ, with k′1 and

k′2 positive integers such that,

λF (p) ≡ λG(p) (mod υ),

λF (p2) ≡ λG(p2) (mod υ),

for every prime p - N`.
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représentations automorphes. J. Inst. Math. Jussieu, 5:629–698, 2006.

[16] H. Takayanagi. Vector-valued Siegel modular forms and their L-functions;
application of a differential operator. Japan J. Math., 19(2):251–297, 1993.

[17] R. Weissauer. Preprints on the Ramanujan conjecture for GSp(4).
http://www.mathi.uni-heidelberg.de/∼weissaue/papers/ramanuge.dvi,
1993/95.

[18] R. Weissauer. Endoscopy for GSp(4). http://www.mathi.uni-
heidelberg.de/∼weissaue/papers/endoscopy.ps, preprint, 1998.

[19] R. Weissauer. Four dimensional Galois representations. Formes automor-
phes. II. Le cas du groupe GSp(4). Asterique, 302:67–150, 2005.

12


